We use extreme value theory to develop point process statistical models relating the probability of extreme winter particulate pollution events in Beijing (“winter haze”) to local meteorological variables. The models are trained with the 2009–2017 record of fine particulate matter concentrations (PM2.5) from the U.S. embassy. We find that 850‐hPa meridional wind velocity (V850) and relative humidity successfully predict the probability for 24‐hr average PM2.5 to exceed 300 μg/m3 (95th percentile of the frequency distribution) as well as higher thresholds. We apply the point process models to mid‐21st century climate projections from the Coupled Model Intercomparison Project Phase 5 model ensemble under two radiative forcing scenarios (RCP8.5 and RCP4.5). We conclude that 21st century climate change alone is unlikely to increase the frequency of severe PM2.5 pollution events (PM2.5 > 300 μg/m3) in Beijing and is more likely to marginally decrease the probability of such events.
Abstract. We quantify weekly methane emissions at 0.25°×0.3125° (≈25×25 km2) resolution from the Permian Basin, the largest oil production basin in the United States, by inverse analysis of satellite observations from the TROPOspheric Monitoring Instrument (TROPOMI) from May 2018 to October 2020. The mean oil and gas emission from the region (± standard deviation of weekly estimates) was 3.7 ± 0.9 Tg a-1, higher than previous TROPOMI inversion estimates that may have used too-low prior emissions or biased background assumptions. We find strong week-to-week variability in emissions superimposed on longer-term trends, and these are consistent with independent inferences of temporal emission variability from tower, aircraft, and multispectral satellite data. New well development and local natural gas spot price were significant drivers of variability in emissions over our study period, but the concurrent 50 % increase in oil and gas production was not. The methane intensity (methane emitted per unit of methane gas produced) averaged 4.6 % ± 1.3 % and steadily decreased over the period from 5–6 % in 2018 to 3–4 % in 2020. While the decreasing trend suggests improvement in operator practices during the study period, methane emissions from the Permian Basin remained high, with methane intensity an order of magnitude above recent industry targets of <0.2 %. Our success in using TROPOMI satellite observations for weekly estimates of emissions from a major oil production basin shows promise for application to near-real-time monitoring in support of climate change mitigation efforts.
Abstract. We quantify weekly methane emissions at 0.25∘ × 0.3125∘ (≈25 × 25 km2) resolution from the Permian Basin, the largest oil production basin in the US, by inverse analysis of satellite observations from the TROPOspheric Monitoring Instrument (TROPOMI) from May 2018 to October 2020. The mean oil and gas emission from the region (± standard deviation of weekly estimates) was 3.7 ± 0.9 Tg a−1, higher than previous TROPOMI inversion estimates that may have used biased prior emissions or background assumptions. We find strong week-to-week variability in emissions superimposed on longer-term trends, and these are consistent with independent inferences of temporal emission variability from tower, aircraft, and multispectral satellite data. New well development and natural gas spot price were significant drivers of variability in emissions over our study period but the concurrent 50 % increase in oil and gas production was not. The methane intensity (methane emitted per unit of methane gas produced) averaged 4.6 % ± 1.3 % and steadily decreased from 5 %–6 % in 2018 to 3 %–4 % in 2020. While the decreasing trend suggests improvement in operator practices during the study period, methane emissions from the Permian Basin remained high, with methane intensity an order of magnitude above the industry target of <0.2 %. Our success in using TROPOMI satellite observations for weekly estimates of emissions from a major oil production basin shows promise for application to near-real-time monitoring in support of climate change mitigation efforts.
Abstract. Air quality network data in China and South Korea show very high year-round mass concentrations of coarse particulate matter (PM), as inferred by the difference between PM10 and PM2.5. Coarse PM concentrations in 2015 averaged 52 µg m−3 in the North China Plain (NCP) and 23 µg m−3 in the Seoul Metropolitan Area (SMA), contributing nearly half of PM10. Strong daily correlations between coarse PM and carbon monoxide imply a dominant source from anthropogenic fugitive dust. Coarse PM concentrations in the NCP and the SMA decreased by 21 % from 2015 to 2019 and further dropped abruptly in 2020 due to COVID-19 reductions in construction and vehicle traffic. Anthropogenic coarse PM is generally not included in air quality models but scavenges nitric acid to suppress the formation of fine particulate nitrate, a major contributor to PM2.5 pollution. GEOS-Chem model simulation of surface and aircraft observations from the Korea–United States Air Quality (KORUS-AQ) campaign over the SMA in May–June 2016 shows that consideration of anthropogenic coarse PM largely resolves the previous model overestimate of fine particulate nitrate. The effect is smaller in the NCP which has a larger excess of ammonia. Model sensitivity simulations for 2015–2019 show that decreasing anthropogenic coarse PM directly increases PM2.5 nitrate in summer, offsetting 80 % the effect of nitrogen oxide and ammonia emission controls, while in winter the presence of coarse PM increases the sensitivity of PM2.5 nitrate to ammonia and sulfur dioxide emissions. Decreasing coarse PM helps to explain the lack of decrease in wintertime PM2.5 nitrate observed in the NCP and the SMA over the 2015–2021 period despite decreases in nitrogen oxide and ammonia emissions. Continuing decrease of fugitive dust pollution means that more stringent nitrogen oxide and ammonia emission controls will be required to successfully decrease PM2.5 nitrate.
Abstract. We use 2011–2019 aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) instrument over East Asia to infer 24 h daily surface fine particulate matter (PM2.5) concentrations at a continuous 6 × 6 km2 resolution over eastern China, South Korea, and Japan. This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data, including information encoded in GOCI AOD retrieval failure and trained with PM2.5 observations from the three national networks. The predicted 24 h GOCI PM2.5 concentrations for sites entirely withheld from training in a 10-fold cross-validation procedure correlate highly with network observations (R2 = 0.89) with a single-value precision of 26 %–32 %, depending on the country. Prediction of the annual mean values has R2 = 0.96 and a single-value precision of 12 %. GOCI PM2.5 is only moderately successful for diagnosing local exceedances of the National Ambient Air Quality Standard (NAAQS) because these exceedances are typically within the single-value precisions of the RF and also because of RF smoothing of extreme PM2.5 concentrations. The area-weighted and population-weighted trends of GOCI PM2.5 concentrations for eastern China, South Korea, and Japan show steady 2015–2019 declines consistent with surface networks, but the surface networks in eastern China and South Korea underestimate population exposure. Further examination of GOCI PM2.5 fields for South Korea identifies hot spots where surface network sites were initially lacking and shows 2015–2019 PM2.5 decreases across the country, except for flat concentrations in the Seoul metropolitan area. Inspection of the monthly PM2.5 time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully captures observed seasonal variations in PM2.5, even though AOD and PM2.5 often have opposite seasonalities. The application of the RF algorithm to urban pollution episodes in Seoul and Beijing demonstrates high skill in reproducing the observed day-to-day variations in air quality and spatial patterns on the 6 km scale. A comparison to a Community Multiscale Air Quality (CMAQ) simulation for the Korean peninsula demonstrates the value of the continuous GOCI PM2.5 fields for testing air quality models, including over North Korea, where they offer a unique resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.