Over the last decade, mobile technology has emerged as a potentially useful platform to facilitate weight management and tackle the current obesity epidemic. Clinicians are being more frequently asked to give advice about the usefulness of mobile apps and many individuals have already integrated apps into their attempts to manage weight. Hence, it is imperative for clinicians involved in weight management to be aware of the latest developments and knowledge about available mobile apps and their usefulness in this field. A number of newly published studies have demonstrated promising results of mobile-based interventions for weight management across different populations, but the extent of their effectiveness remains widely debated. This narrative literature review synthesizes the latest evidence, primarily from randomized controlled trials (RCTs), regarding the clinical use of mobile applications for weight management, as well as highlight key limitations associated with their use and directions for future research and practice. Overall, evidence suggests that mobile applications may be useful as low-intensity approaches or adjuncts to conventional weight management strategies. However, there is insufficient evidence to support their use as stand-alone intensive approaches to weight management. Further research is needed to clarify the extent of utility of these applications, as well as the measures required to maximize their potential both as stand-alone approaches and adjuncts to more intensive programs.
Gestational diabetes mellitus (GDM) is the fastest growing type of diabetes, affecting between 2 to 38% of pregnancies worldwide, varying considerably depending on diagnostic criteria used and sample population studied. Adverse obstetric outcomes include an increased risk of macrosomia, and higher rates of stillbirth, instrumental delivery, and birth trauma. Metabolomics, which is a platform used to analyse and characterise a large number of metabolites, is increasingly used to explore the pathophysiology of cardiometabolic conditions such as GDM. This review aims to summarise metabolomics studies in GDM (from inception to January 2021) in order to highlight prospective biomarkers for diagnosis, and to better understand the dysfunctional metabolic pathways underlying the condition. We found that the most commonly deranged pathways in GDM include amino acids (glutathione, alanine, valine, and serine), carbohydrates (2-hydroxybutyrate and 1,5-anhydroglucitol), and lipids (phosphatidylcholines and lysophosphatidylcholines). We also highlight the possibility of using certain metabolites as predictive markers for developing GDM, with the use of highly stratified modelling techniques. Limitations for metabolomic research are evaluated, and future directions for the field are suggested to aid in the integration of these findings into clinical practice.
The novel coronavirus severe acute respiratory syndrome (SARS-CoV-2) has progressed rapidly from an outbreak to a global pandemic, with new variants rapidly emerging. Coronavirus disease 2019 (COVID-19), the disease resulting from SARS-CoV-2 infection, can lead to multiorgan damage. Due to the extremely contagious and fatal nature of the virus, it has been a priority of medical research to find effective means of treatment. Amid this search, the role of vitamin D in modulating various aspects of the innate and adaptive immune system has been discussed. This review aims to consolidate the research surrounding the role of vitamin D in the treatment and prevention of COVID-19. While there are some conflicting results reported, the consensus is that vitamin D has a host of immunomodulatory effects which may be beneficial in the context of COVID-19 and that low levels of vitamin D can result in dysfunction of crucial antimicrobial effects, potentially contributing to poor prognosis. Studies also show that the effects of low vitamin D can be mitigated via supplementation, although the benefits of vitamin D supplementation in the treatment of COVID-19 remain controversial.
Pharmacological correction of the defective ion channel with cystic fibrosis transmembrane conductance regulator (CFTR) has become an attractive approach to therapy directed at the root cause of the life-limiting disease cystic fibrosis (CF). CFTR defects range from absence, misfolding, and resulting degradation to functional defects of the CFTR protein. The discovery and development of the CFTR potentiator ivacaftor was a major break-through in CF therapy and has triggered an enormous incentive for seeking effective modulators such as lumacaftor, tezacaftor or elexacaftor for all patients with CF. A number of emerging CFTR modulators are currently in the development pipeline, and rescue levels of CFTR protein approach a cure for cystic fibrosis. In this review, we identify and characterize all preclinical and clinical emerging CFTR modulators and discuss the in vitro pharmacology, looking at CFTR protein expression and chloride transport and the translation to the clinic. The new emerging CFTR modulators could offer new therapeutic solutions for CF patients.
We have demonstrated that ivacaftor displays synergistic antibacterial activity in combination with polymyxin B against polymyxin-resistant Pseudomonas aeruginosa that commonly colonizes the lungs of people with cystic fibrosis (CF). However, the underlying mechanism(s) remain unclear. In the present study, we employed untargeted metabolomics to investigate the synergistic killing mechanism of polymyxin B in combination with ivacaftor against a polymyxin-susceptible P. aeruginosa FADDI-PA111 (polymyxin B MIC = 2 mg/L) and a polymyxin-resistant CF P. aeruginosa FADDI-PA006 (polymyxin B MIC = 8 mg/L). Metabolites were extracted at 3 h after treatments with polymyxin B alone (2 μg/mL for FADDI-PA111 and 4 μg/mL FADDI-PA006 P. aeruginosa), ivacaftor alone (8 μg/mL), and in combination. Polymyxin B monotherapy induced significant perturbations in the glycerophospholipid and fatty acid metabolism pathways against FADDI-PA111 and to a lesser extent in FADDI-PA006. In both strains, treatment with ivacaftor alone induced more pronounced perturbations in glycerophospholipid and fatty acid metabolism pathways than that with polymyxin B alone. This highlights the unique antimicrobial mode of action of ivacaftor. Pathway analysis revealed that in combination treatment, polymyxin B mediated killing is elevated by ivacaftor, largely due to the inhibition of cell envelope biogenesis via suppression of key membrane lipid metabolites (e.g., sn-glycerol 3-phosphate and sn-glycero-3-phosphoethanolamine) as well as perturbations in peptidoglycan and lipopolysaccharide biosynthesis. Furthermore, significant perturbations in the levels of amino sugars and nucleotide sugars, glycolysis, the tricarboxylic acid cycle, and pyrimidine ribonucleotide biogenesis were observed with the combination treatment. These findings provide novel mechanistic information on the synergistic antibacterial activity of polymyxin− ivacaftor combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.