We present in this paper an SIRS epidemic model with saturated incidence rate and disease-inflicted mortality. The Global stability of the endemic equilibrium state is proved by constructing a Lyapunov function. For the stochastic version, the global existence and positivity of the solution is showed, and the global stability in probability and pth moment of the system is proved under suitable conditions on the intensity of the white noise perturbation.
The aim of this paper is to generalize the nonlinear incidence rate of a stochastic SIRS (susceptible-infected-recovered-susceptible) epidemic model. Our basic model was enriched with the hypotheses of vertical transmission and transfer from infected to susceptible individuals, to approach the reality. Our analysis showed that the model is well-posed. Under some conditions imposed on the intensity of the white noise perturbation, the global stability of the system is proven. Furthermore, the threshold of our model which determines the extinction and persistence of the disease is established. Numerical examples are realized to prove the rigor of our theoretical results.
The spread of infectious diseases is a major challenge in our contemporary world, especially after the recent outbreak of Coronavirus disease 2019 (COVID‐19). The quarantine strategy is one of the important intervention measures to control the spread of an epidemic by greatly minimizing the likelihood of contact between infected and susceptible individuals. In this study, we analyze the impact of various stochastic disturbances on the epidemic dynamics during the quarantine period. For this purpose, we present an SIQS epidemic model that incorporates the stochastic transmission and the Lévy noise in order to simulate both small and massive perturbations. Under appropriate conditions, some interesting asymptotic properties are proved, namely, ergodicity, persistence in the mean, and extinction of the disease. The theoretical results show that the dynamics of the perturbed model are determined by parameters that are closely related to the stochastic noises. Our work improves many existing studies in the field of mathematical epidemiology and provides new techniques to predict and analyze the dynamic behavior of epidemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.