Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32°C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32°C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm.
Background-Orphanin FQ/Nociceptin (OFQ/N), the endogenous ligand of the opioid receptorlike (ORL1) receptor, blocks cocaine sensitization in rats. In the current study, we tested whether OFQ/N would block sensitization to the motor stimulatory and conditioned rewarding actions of cocaine in mice. We also examined whether OFQ/N, given to cocaine-sensitized mice, would reverse the sensitized response and whether it would prevent the amplified sensitized response induced by a second cocaine-sensitizing regimen in sensitized mice.
Chronic morphine treatment increases the levels of prohormone convertase 2 (PC2) in brain regions involved in nociception, tolerance and dependence. Thus, we tested if PC2 null mice exhibit altered morphine-induced antinociception, tolerance and dependence. PC2 null mice and their wild-type controls were tested for baseline hot plate latency, injected with morphine (1.25 – 10 mg/kg) and tested for antinociception 30 min later. For tolerance studies, mice were tested in the hot plate test before and 30 min following morphine (5 mg/kg) on day 1. Mice then received an additional dose so that the final dose of morphine was 10 mg/kg on this day. On days 2–4, mice received additional doses of morphine (20, 40 and 80 mg/kg on days 1, 2, 3, and 4, respectively). On day 5, mice were tested in the hot plate test before and 30 min following morphine (5 mg/kg). For withdrawal studies, mice were treated with the escalating doses of morphine (10, 20, 40 and 80 mg/kg) for 4 days, implanted with a morphine pellet on day 5 and 3 days later with naloxone (1 mg/kg) and signs of withdrawal were recorded. Morphine dose- dependently induced antinociception and the magnitude of this response was greater in PC2 null mice. Tolerance to morphine was observed in wild-type mice and this phenomenon was blunted in PC2 null mice. Withdrawal signs were also reduced in PC2 null mice. Immunohistochemical studies showed up-regulation of the mu opioid receptor (MOP) protein expression in the periaqueductal grey area, ventral tegmental area, lateral hypothalamus, medial hypothalamus, nucleus accumbens, and somatosensory cortex in PC2 null mice. Likewise, naloxone specific binding was increased in the brains of these mice compared to their wild-type controls. The results suggest that the PC2-derived peptides may play a functional role in morphine-induced antinociception, tolerance and dependence. Alternatively, the lack of opioid peptides led to up- regulation of the MOP and altered morphine-induced antinociception, tolerance and dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.