Crystallographic and spectroscopic studies of extradiol cleaving catechol dioxygenases indicate that the enzyme-substrate complexes have both an iron(II) center and a monoanionic catecholate. Herein we report a series of iron(II)-monoanionic catecholate complexes, [(L)Fe(II)(catH)](X) (1a, L = 6-Me(3)-TPA (tris(6-methyl-2-pyridylmethyl)amine), catH = CatH (1,2-catecholate monoanion); 1b, L = 6-Me(3)-TPA, catH = DBCH (3,5-di-tert-butyl-1,2-catecholate monoanion); 1c, L = 6-Me(2)-bpmcn (N,N'-dimethyl-N,N'-bis(6-methyl-2-pyridylmethyl)-trans-1,2-diaminocyclohexane), catH = CatH; 1d, L = 6-Me(2)-bpmcn, catH = DBCH), that model such enzyme complexes. The crystal structure of [(6-Me(2)-bpmcn)Fe(II)(DBCH)](+) (1d) shows that the DBCH ligand binds to the iron asymmetrically as previously reported for 1b, with two distinct Fe-O bonds of 1.943(1) and 2.344(1) A. Complexes 1 react with O(2) or NO to afford blue-purple iron(III)-catecholate dianion complexes, [(L)Fe(III)(cat)](+) (2). Interestingly, crystallographically characterized 2d, isolated from either reaction, has the N-methyl groups in a syn configuration, in contrast to the anti configuration of the precursor complex, so epimerization of the bound ligand must occur in the course of isolating 2d. This notion is supported by the fact that the UV-vis and EPR properties of in situ generated 2d(anti) differ from those of isolated 2d(syn). While the conversion of 1 to 2 in the presence of O(2) occurs without an obvious intermediate, that in the presence of NO proceeds via a metastable S = (3)/(2) [(L)Fe(catH)(NO)](+) adduct 3, which can only be observed spectroscopically but not isolated. Intermediates 3a and 3b subsequently disproportionate to afford two distinct complexes, [(6-Me(3)-TPA)Fe(III)(cat)](+) (2a and 2b) and [(6-Me(3)-TPA)Fe(NO)(2)](+) (4) in comparable yield, while 3d converts to 2d in 90% yield. Complexes 2b and anti-2d react further with O(2) over a 24 h period and afford a high yield of cleavage products. Product analysis shows that the products mainly derive from intradiol cleavage but with a small extent of extradiol cleavage (89:3% for 2b and 78:12% for anti-2d). The small amounts of the extradiol cleavage products observed may be due to the dissociation of an alpha-methyl substituted pyridyl arm, generating a complex with a tridentate ligand. Surprisingly, syn-2d does not react with O(2) over the course of 4 days. These results suggest that there are a number of factors that influence the mode and rate of cleavage of catechols coordinated to iron centers.
A facial tridentate ligand is a key feature of iron catecholate complexes that elicit extradiol cleavage of catechols (see picture). The facial geometry allows O2 and the catecholate dianion to form a tridentate intermediate on the opposite face. Accordingly, complexes of a meridional tridentate ligand do not elicit any extradiol cleavage but instead yield quinone or result in intradiol cleavage.
Der Koordinationsmodus bestimmt die Regiospezifität: Ein facialer dreizähniger Ligand ermöglicht es bei Eisen‐Brenzcatechinat‐Komplexen (siehe Schema), dass O2 in Nachbarschaft zum Brenzcatechin‐Dianion an das Eisenzentrum koordiniert und es dann so angreifen kann, dass eine Spaltung der C2‐C3‐Bindung erfolgt („Extradiol‐Spaltung“). Meridionale dreizähnige Liganden haben dagegen eine Spaltung der C1‐C2‐Bindung („Intradiol‐Spaltung“) zur Folge oder aber die 1,2‐Chinon‐Bildung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.