Purpose To correlate human foveal development visualized by spectral-domain optical coherence tomography (SDOCT) with histologic specimens. Design Retrospective, observational case series. Methods Morphology and layer thickness of retinal SDOCT images from 1 eye each of 22 premature infants, 30 term infants, 16 children, and 1 adult without macular disease were compared to light microscopic histology from comparable ages. Results SDOCT images correlate with major histologic findings at all time points. With both methods, preterm infants demonstrate a shallow foveal pit indenting inner retinal layers (IRL) and short, undeveloped foveal photoreceptors. At term, further IRL displacement forms the pit and peripheral photoreceptors lengthen; the elongation of inner and outer segments (IS and OS, histology) separates the IS band from retinal pigment epithelium. Foveal IS and OS are shorter than peripheral for weeks after birth (both methods). By 13 months, foveal cone cell bodies stack >6 deep, Henle fiber layer (HFL) thickens, and IS/OS length equals peripheral; on SDOCT, foveal outer nuclear layer (which includes HFL) and IS/OS thickens. At 13 to 16 years, the fovea is fully developed with a full complement of SDOCT bands; cone cell bodies >10 deep have thin, elongated, and tightly packed IS/OS. Conclusions We define anatomic correlates to SDOCT images from normal prenatal and postnatal human fovea. OCT bands typical of photoreceptors of the adult fovea are absent near birth because of the immaturity of foveal cones, develop by 24 months, and mature into childhood. This validates the source of SDOCT signal and provides a framework to assess foveal development and disease.
Purpose Structural and compositional heterogeneity within drusen, composed of lipid, carbohydrates, and proteins, have been previously described. We sought to detect and define phenotypic patterns of drusen heterogeneity in the form of optical coherence tomography–reflective drusen substructures (ODS) and examine their associations with age-related macular degeneration (AMD)-related features and AMD progression. Design Retrospective analysis in a prospective study. Participants Patients with intermediate AMD (n = 349) enrolled in the multicenter Age-Related Eye Disease Study 2 (AREDS2) ancillary spectral domain optical coherence tomography (SD OCT) study. Methods Baseline SD OCT scans of 1 eye per patient were analyzed for presence of ODS. Cross-sectional and longitudinal associations of ODS presence with AMD-related features visible on SD OCT and color photographs, including drusen volume, geographic atrophy (GA), and preatrophic features, were evaluated for the entire macular region. Similar associations were also made locally within a 0.5-mm diameter region around individual ODS and corresponding control region without ODS in the same eye. Main Outcome Measures Preatrophy SD OCT changes and GA, central GA, and choroidal neovascularization (CNV) from color photographs. Results Four phenotypic subtypes of ODS were defined: low reflective cores, high reflective cores, conical debris, and split drusen. Of the 349 participants, there were 307 eligible eyes and 74 (24%) had at least 1 ODS. The ODS at baseline were associated with (1) greater macular drusen volume at baseline (P < 0.001), (2) development of preatrophic changes at year 2 (P = 0.001–0.01), and (3) development of macular GA (P = 0.005) and preatrophic changes at year 3 (P = 0.002–0.008), but not development of CNV. The ODS at baseline in a local region were associated with (1) presence of preatrophy changes at baseline (P = 0.02-0.03) and (2) development of preatrophy changes at years 2 and 3 within the region (P = 0.008-0.05). Conclusions Optical coherence tomography–reflective drusen substructures are optical coherence tomography–based biomarkers of progression to GA, but not to CNV, in eyes with intermediate AMD. Optical coherence tomography–reflective drusen substructures may be a clinical entity helpful in monitoring AMD progression and informing mechanisms in GA pathogenesis.
Photoreceptor inner and outer segment development in VPT infants appears delayed when compared to term infants, and the photoreceptor RPE junction remains immature in all infants at TEA. Delayed maturation of photoreceptors could contribute to differences in visual function in some VPT infants.
PURPOSE. To determine whether choroidal imaging is feasible in preterm and term infants using an 840-nm portable spectral domain optical coherence tomography (SD-OCT) system without the use of enhanced-depth imaging techniques and to assess choroidal development by comparing choroidal thickness of preterm infants, term infants, and adults.METHODS. SD-OCT images were obtained from 86 preterm infants, 59 term infants, and nine adults using a portable SD-OCT system plus nine adults using a tabletop system. An unprocessed image across the macula from one randomly selected eye of each participant was selected for determination of whether the choroidal-scleral junction (CSJ) could be visualized and for measurement of choroidal thickness.RESULTS. Subfoveal CSJ was visualized in 96% of young-preterm infants (imaged from 30-36 weeks postmenstrual age [PMA]); 78% of term-aged preterm infants (imaged from 37-42 weeks PMA); 49% of term infants; and 39% of adult subjects. Racial pigmentation did not affect CSJ visibility in young-preterm infants (P ¼ 0.57). Subfoveal choroidal thickness (SFCT) in young-preterm infants, term-aged preterm infants, term infants, and adults was 176 6 53 lm, 289 6 92 lm, 329 6 66 lm, and 258 6 66 lm, respectively, and these were all statistically significantly different from one another except term-aged preterms to adults.CONCLUSIONS. Infant choroid can be imaged with a portable SD-OCT system without enhanced depth imaging. Melanin in the RPE and choroid does not hinder outer choroidal imaging in young-preterm infants without advanced retinopathy of prematurity (ROP). In preterm infants, choroidal thickness increased with age but was thinner when compared to term infants suggesting delayed development due to ROP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.