Aegilops tauschii, the D-genome donor of bread wheat, Triticum aestivum, is a storehouse of genetic diversity, and an important resource for future wheat improvement. Genomic and population analysis of 549 Ae. tauschii and 103 wheat accessions was performed by using 13,135 high quality SNPs. Population structure, principal component, and cluster analysis confirmed the differentiation of Ae. tauschii into two lineages; lineage 1 (L1) and lineage 2 (L2), the latter being the wheat D-genome donor. Lineage L1 contributes only 2.7% of the total introgression from Ae. tauschii for a set of United States winter wheat lines, confirming the great amount of untapped genetic diversity in L1. Lineage L2 accessions had overall greater allelic diversity and wheat accessions had the least allelic diversity. Both lineages also showed intra-lineage differentiation with L1 being driven by longitudinal gradient and L2 differentiated by altitude. There has previously been little reported on natural hybridization between L1 and L2. We found nine putative inter-lineage hybrids in the population structure analysis, each containing numerous lineage-specific private alleles from both lineages. One hybrid was confirmed as a recombinant inbred between the two lineages, likely artificially post collection. Of the remaining eight putative hybrids, a group of seven from Georgia carry 713 SNPs with private alleles, which points to the possibility of a novel L1–L2 hybrid lineage. To facilitate the use of Ae. tauschii in wheat improvement, a MiniCore consisting of 29 L1 and 11 L2 accessions, has been developed based on genotypic, phenotypic and geographical data. MiniCore reduces the collection size by over 10-fold and captures 84% of the total allelic diversity in the whole collection.
BackgroundTriticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis.ResultsWe developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb.ConclusionThe mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability.
To date, only one gene conferring resistance to Wheat streak mosaic virus (WSMV) designated as Wsm1 was transferred from Thinopyrum intermedium (Host) Barkworth and Dewey to wheat (Triticum aestivum L.) in the form of a compensating Robertsonian translocation T4DL·4JsS. Wsm1 confers high levels of resistance to WSMV under field conditions; however, in certain genetic backgrounds and environments, the presence of the T4DL·4JsS translocation reduces agronomic performance. The objective of this study was to shorten the Th. intermedium segment in the T4DL·4JsS translocation. We recovered one proximal (rec36) and four distal (rec45, rec64, rec87, rec213) primary recombinants. Genomic in situ hybridization and molecular marker analyses determined the size of the Th. intermedium segments in the distal recombinants to be about 20% of the 4DS‐4JsS arm. All primary recombinant stocks, together with appropriate controls, were evaluated for their resistance to WSMV and Triticum mosaic virus (TriMV) in greenhouse tests. Whereas the distal recombinants rec45, rec64, rec87, and rec213 were resistant to both WSMV and TriMV at low temperatures of 18°C, the proximal recombinant rec36 reacted susceptible, which mapped the Wsm1 gene to the distal 20% of the 4DS‐4JsS arm. We successfully shortened the Th. intermedium segment while still retaining the Wsm1 gene. The T4DL·4DS‐4JsS recombinant chromosome of the rec213 stock was transferred to adapted Kansas hard red winter wheat cultivars.
We show how the CO 2 contribution to the Earth's greenhouse effect can be estimated from relatively simple physical considerations and readily available spectroscopic data. In particular, we present a calculation of the "climate sensitivity" (that is, the increase in temperature caused by a doubling of the concentration of CO 2 ) in the absence of feedbacks. Our treatment highlights the important role played by the frequency dependence of the CO 2 absorption spectrum. For pedagogical purposes, we provide two simple models to visualize different ways in which the atmosphere might return infrared radiation back to the Earth. The more physically realistic model, based on the Schwarzschild radiative transfer equations, uses as input an approximate form of the atmosphere's temperature profile, and thus includes implicitly the effect of heat transfer mechanisms other than radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.