Necrosis can be induced by stimulating death receptors with tumor necrosis factor (TNF) or other agonists; however, the underlying mechanism differentiating necrosis from apoptosis is largely unknown. We identified the protein kinase receptor-interacting protein 3 (RIP3) as a molecular switch between TNF-induced apoptosis and necrosis in NIH 3T3 cells and found that RIP3 was required for necrosis in other cells. RIP3 did not affect RIP1-mediated apoptosis but was required for RIP1-mediated necrosis and the enhancement of necrosis by the caspase inhibitor zVAD. By activating key enzymes of metabolic pathways, RIP3 regulates TNF-induced reactive oxygen species production, which partially accounts for RIP3's ability to promote necrosis. Our data suggest that modulation of energy metabolism in response to death stimuli has an important role in the choice between apoptosis and necrosis.
Programmed cell death is essential for the development and maintenance of the immune system and its responses to exogenous and endogenous stimuli. Studies have demonstrated that in addition to caspase-dependent apoptosis, necrosis dependent on the kinases RIP1 and RIP3 (also called necroptosis) is a major programmed cell-death pathway in development and immunity. These two programmed cell-death pathways may suppress each other, and necroptosis also serves as an alternative when caspase-dependent apoptosis is inhibited or absent. Here we summarize recent advancements that have identified the molecular mechanisms that underlie necroptosis and explore the mechanisms that regulate the interplay between apoptosis and necroptosis.
Necrotic death of macrophages has long been known to be present in atherosclerotic lesions but has not been studied. We examined the role of receptor interacting protein (RIP) 3, a mediator of necrotic cell death, in atherosclerosis and found that RIP3(-/-);Ldlr(-/-) mice were no different from RIP3(+/+);Ldlr(-/-) mice in early atherosclerosis but had significant reduction in advanced atherosclerotic lesions. Similar results were observed in Apoe(-/-) background mice. Bone marrow transplantation revealed that loss of RIP3 expression from bone-marrow-derived cells is responsible for the reduced disease progression. While no difference was found in apoptosis between RIP3(-/-);Ldlr(-/-) and RIP3(+/+);Ldlr(-/-) mice, electron microscopy revealed a significant reduction of macrophage primary necrosis in the advanced lesions of RIP3(-/-) mice. In vitro cellular studies showed that RIP3 deletion had no effect on oxidized low-density lipoprotein (LDL)-induced macrophage apoptosis, but prevented macrophage primary necrosis occurring in response to oxidized LDL under caspase inhibition or RIP3 overexpression conditions. RIP3-dependent necrosis is not postapoptotic, and the increased primary necrosis in advanced atherosclerotic lesions most likely resulted from the increase of RIP3 expression. Our data demonstrate that primary necrosis of macrophages is proatherogenic during advanced atherosclerosis development.
Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, including those in innate immunity, but their downstream substrates are largely unknown. This review will give an overview of the structures and functions of RIP family members, and an update of recent progress in RIP kinase research.
With the wide availability of massively parallel sequencing technologies, genetic mapping has become the rate limiting step in mammalian forward genetics. Here we introduce a method for real-time identification of N-ethyl-N-nitrosourea-induced mutations that cause phenotypes in mice. All mutations are identified by whole exome G1 progenitor sequencing and their zygosity is established in G2/G3 mice before phenotypic assessment. Quantitative and qualitative traits, including lethal effects, in single or multiple combined pedigrees are then analyzed with Linkage Analyzer, a software program that detects significant linkage between individual mutations and aberrant phenotypic scores and presents processed data as Manhattan plots. As multiple alleles of genes are acquired through mutagenesis, pooled "superpedigrees" are created to analyze the effects. Our method is distinguished from conventional forward genetic methods because it permits (1) unbiased declaration of mappable phenotypes, including those that are incompletely penetrant (2), automated identification of causative mutations concurrent with phenotypic screening, without the need to outcross mutant mice to another strain and backcross them, and (3) exclusion of genes not involved in phenotypes of interest. We validated our approach and Linkage Analyzer for the identification of 47 mutations in 45 previously known genes causative for adaptive immune phenotypes; our analysis also implicated 474 genes not previously associated with immune function. The method described here permits forward genetic analysis in mice, limited only by the rates of mutant production and screening.N-ethyl-N-nitrosourea | genetic mapping | forward genetics | mutagenesis | massively parallel sequencing P henotypic variation in mice can be induced with N-ethyl-Nnitrosourea (ENU), which creates single base pair substitutions in germ line DNA. However, the positional cloning of ENU-induced mutations causative for phenotypes of interest has historically been a time-consuming process, beginning with generation of an outcrossed recombinant mapping population of phenotypically mutant and WT mice, genotyping individual mice at genetic markers across the genome to create a linkage map, and finally targeted sequencing to identify the causative mutation within the critical region. The advent of massively parallel sequencing techniques has given rise to more rapid "mapping-bysequencing" methods in which genome-wide marker genotyping and DNA sequencing are combined into a single step applied to either individual or pooled groups of organisms (1). For ENUmutagenized mice, early experiments used massively parallel sequencing for mutation identification within a critical region defined by traditional or bulk segregation mapping using recombinant mapping populations produced by outcrossing the mutant to another inbred laboratory strain and backcrossing or intercrossing a second time (2-4). Later reports demonstrated mapping with the identified sequence variants themselves as markers, which eliminated...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.