Necrosis can be induced by stimulating death receptors with tumor necrosis factor (TNF) or other agonists; however, the underlying mechanism differentiating necrosis from apoptosis is largely unknown. We identified the protein kinase receptor-interacting protein 3 (RIP3) as a molecular switch between TNF-induced apoptosis and necrosis in NIH 3T3 cells and found that RIP3 was required for necrosis in other cells. RIP3 did not affect RIP1-mediated apoptosis but was required for RIP1-mediated necrosis and the enhancement of necrosis by the caspase inhibitor zVAD. By activating key enzymes of metabolic pathways, RIP3 regulates TNF-induced reactive oxygen species production, which partially accounts for RIP3's ability to promote necrosis. Our data suggest that modulation of energy metabolism in response to death stimuli has an important role in the choice between apoptosis and necrosis.
Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis, a type of programmed necrosis, has a role in cisplatin-induced AKI. We found that inhibition of any of the core components of the necroptotic pathway-receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)-by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination of cytokines (TNF-a, TNF-related weak inducer of apoptosis, and IFN-g) that were upregulated in proximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatintreated mice was partially diminished in RIP3-or MLKL-deficient mice, suggesting a positive feedback loop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI.
Recent studies implicate a strong association between elevated plasma branched-chain amino acids (BCAAs) and insulin resistance (IR). However, a causal relationship and whether interrupted BCAA homeostasis can serve as a therapeutic target for diabetes remain to be established experimentally. In this study, unbiased integrative pathway analyses identified a unique genetic link between obesityassociated IR and BCAA catabolic gene expression at the pathway level in human and mouse populations. In genetically obese (ob/ob) mice, rate-limiting branched-chain a-keto acid (BCKA) dehydrogenase deficiency (i.e., BCAA and BCKA accumulation), a metabolic feature, accompanied the systemic suppression of BCAA catabolic genes. Restoring BCAA catabolic flux with a pharmacological inhibitor of BCKA dehydrogenase kinase (BCKDK) ( a suppressor of BCKA dehydrogenase) reduced the abundance of BCAA and BCKA and markedly attenuated IR in ob/ob mice. Similar outcomes were achieved by reducing protein (and thus BCAA) intake, whereas increasing BCAA intake did the opposite; this corroborates the pathogenic roles of BCAAs and BCKAs in IR in ob/ob mice. Like BCAAs, BCKAs also suppressed insulin signaling via activation of mammalian target of rapamycin complex 1. Finally, the small-molecule BCKDK inhibitor significantly attenuated IR in high-fat diet-induced obese mice. Collectively, these data demonstrate a pivotal causal role of a BCAA catabolic defect and elevated abundance of BCAAs and BCKAs in obesity-associated IR and provide proof-ofconcept evidence for the therapeutic validity of manipulating BCAA metabolism for treating diabetes.
Necroptosis is mediated by a signaling complex called necrosome, containing receptor-interacting protein (RIP)1, RIP3, and mixed-lineage kinase domain-like (MLKL). It is known that RIP1 and RIP3 form heterodimeric filamentous scaffold in necrosomes through their RIP homotypic interaction motif (RHIM) domain-mediated oligomerization, but the signaling events based on this scaffold has not been fully addressed. By using inducible dimer systems we found that RIP1-RIP1 interaction is dispensable for necroptosis; RIP1-RIP3 interaction is required for necroptosis signaling, but there is no necroptosis if no additional RIP3 protein is recruited to the RIP1-RIP3 heterodimer, and the interaction with RIP1 promotes the RIP3 to recruit other RIP3; RIP3-RIP3 interaction is required for necroptosis and RIP3-RIP3 dimerization is sufficient to induce necroptosis; and RIP3 dimer-induced necroptosis requires MLKL. We further show that RIP3 oligomer is not more potent than RIP3 dimer in triggering necroptosis, suggesting that RIP3 homo-interaction in the complex, rather than whether RIP3 has formed homo polymer, is important for necroptosis. RIP3 dimerization leads to RIP3 intramolecule autophosphorylation, which is required for the recruitment of MLKL. Interestingly, phosphorylation of one of RIP3 in the dimer is sufficient to induce necroptosis. As RIP1-RIP3 heterodimer itself cannot induce necroptosis, the RIP1-RIP3 heterodimeric amyloid fibril is unlikely to directly propagate necroptosis. We propose that the signaling events after the RIP1-RIP3 amyloid complex assembly are the recruitment of free RIP3 by the RIP3 in the amyloid scaffold followed by autophosphorylation of RIP3 and subsequent recruitment of MLKL by RIP3 to execute necroptosis. Cell Death and Differentiation (2014) 21, 1709-1720; doi:10.1038/cdd.2014.77; published online 6 June 2014Necroptosis is a type of programmed necrosis characterized by necrotic morphological changes, including cellular organelle swelling, cell membrane rupture, 1-3 and dependence of receptor-interacting protein (RIP)1 4 and RIP3. [5][6][7] Physiological function of necroptosis has been illustrated in host defense, [8][9][10][11] inflammation, 12-16 tissue injury, 10,17,18 and development. [19][20][21] Necroptosis can be induced by a number of different extracellular stimuli such as tumor necrosis factor (TNF). TNF stimulation leads to formation of TNF receptor 1 (TNFR1) signaling complex (named complex I), and complex II containing RIP1, TRADD, FAS-associated protein with a death domain (FADD), and caspase-8, of which the activation initiates apoptosis. If cells have high level of RIP3, RIP1 recruits RIP3 to form necrosome containing FADD, [22][23][24] caspase-8, RIP1, and RIP3, and the cells undergo necroptosis. 25,26 Caspase-8 and FADD negatively regulates necroptosis, 27-30 because RIP1, RIP3, and CYLD are potential substrates of caspase-8. [31][32][33][34] Necrosome also suppresses apoptosis but the underlying mechanism has not been described yet. Mixed-lineage kinase domain-like (ML...
Background:The molecular mechanism underlying the regulation of cellulase production by T. reesei is unclear. Results: The absence of sugar transporter Stp1 enhanced cellulase gene induction whereas the absence of Crt1 abolished cellulase gene expression. Conclusion: Crt1 is essential in cellulase gene induction independent of intracellular sugar delivery. Significance: These data shed light on the mechanism by which T. reesei senses and transmits cellulose signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.