Migratory water birds are the natural reservoir of influenza A viruses. H5 and H7 influenza viruses are isolated over the world and also circulate among poultry in Asia. In 2010, two H5N1 highly pathogenic avian influenza viruses (HPAIVs) were isolated from fecal samples of water birds on the flyway of migration from Siberia, Russia to the south in Hokkaido, Japan. H7N9 viruses are sporadically isolated from humans and circulate in poultry in China. To monitor whether these viruses have spread in the wild bird population, we conducted virological surveillance of avian influenza in migratory water birds in autumn from 2010 to 2014. A total of 8103 fecal samples from migratory water birds were collected in Japan and Mongolia, and 350 influenza viruses including 13 H5 and 19 H7 influenza viruses were isolated. A phylogenetic analysis revealed that all isolates are genetically closely related to viruses circulating among wild water birds. The results of the antigenic analysis indicated that the antigenicity of viruses in wild water birds is highly stable despite their nucleotide sequence diversity but is distinct from that of HPAIVs recently isolated in Asia. The present results suggest that HPAIVs and Chinese H7N9 viruses were not predominantly circulating in migratory water birds; however, continued monitoring of H5 and H7 influenza viruses both in domestic and wild birds is recommended for the control of avian influenza.
This study aimed to elucidate virus, host and environmental dynamics of Vietnamese H5 highly pathogenic avian influenza viruses (HPAIVs) during 2014–2017. Epidemiologically, H5 HPAIVs were frequently detected in apparently healthy domestic and Muscovy ducks and therefore these are preferred species for H5 HPAIV detection in active surveillance. Virologically, clade 2.3.2.1c and 2.3.4.4 H5 HPAIVs were predominant and exhibited distinct phylogeographic evolution. Clade 2.3.2.1c viruses clustered phylogenetically in North, Central and South regions, whilst clade 2.3.4.4 viruses only detected in North and Central regions formed small groups. These viruses underwent diverse reassortment with existence of at least 12 genotypes and retained typical avian-specific motifs. These H5 HPAIVs exhibited large antigenic distance from progenitor viruses and commercial vaccines currently used in poultry. Bayesian phylodynamic analysis inferred that clade 2.3.2.1c viruses detected during 2014–2017 were likely descended from homologous clade viruses imported to Vietnam previously and/or preexisting Chinese viruses during 2012–2013. Vietnamese clade 2.3.4.4 viruses closely shared genetic traits with contemporary foreign spillovers, suggesting that there existed multiple transboundary virus dispersals to Vietnam. This study provides insights into the evolution of Vietnamese H5 HPAIVs and highlights the necessity of strengthening control measures such as, preventive surveillance and poultry vaccination.
The aim of this study was to describe the spatiotemporal distribution of H5 HPAI outbreak reports for the period 2014 to 2017 and to identify factors associated with H5 HPAI outbreak reports. Throughout the study period, a total of 139 outbreaks of H5 HPAI in poultry were reported, due to either H5N1 (96 outbreaks) or H5N6 (43 outbreaks) subtype viruses.H5N1 HPAI outbreaks occurred in all areas of Vietnam while H5N6 HPAI outbreaks were only reported in the northern and central provinces. We counted the number of H5N1 and H5N6 outbreak report-positive districts per province over the four-year study period and calculated 46 the provincial-level standardized morbidity ratio for H5N1 and H5N6 outbreak reports as the observed number of positive districts divided by the expected number. A mixed-effects, zero-report risk was accounted-for by the fixed effects included in the zero-inflated Poisson model.In contrast, the amount of unaccounted-for risk in the H5N6 model was substantially greater than the H5N1 model. For H5N6 we recommend that targeted investigations should be carried out in provinces with relatively large spatially correlated random effect terms to identify likely determinants of disease. Similarly, investigations should be carried out in provinces with relatively low spatially correlated random effect terms to identify protective factors for disease and/or reasons for failure to report.
In Vietnam, live bird markets are found in most populated centres, providing the means by which fresh poultry can be purchased by consumers for immediate consumption. Live bird markets are aggregation points for large numbers of poultry, and therefore, it is common for a range of avian influenza viruses to be mixed within live bird markets as a result of different poultry types and species being brought together from different geographical locations. We conducted a cross-sectional study in seven live bird markets in four districts of Thua Thien Hue Province in August and December, 2014. The aims of this study were to (i) document the prevalence of avian influenza in live bird markets (as measured by virus isolation); and (ii) quantify individual bird-, seller- and market-level characteristics that rendered poultry more likely to be positive for avian influenza virus at the time of sale. A questionnaire soliciting details of knowledge, attitude and avian influenza practices was administered to poultry sellers in study markets. At the same time, swabs and faecal samples were collected from individual poultry and submitted for isolation of avian influenza virus. The final data set comprised samples from 1,629 birds from 83 sellers in the seven live bird markets. A total of 113 birds were positive for virus isolation; a prevalence of 6.9 (95% CI 5.8-8.3) avian influenza virus-positive birds per 100 birds submitted for sale. After adjusting for clustering at the market and individual seller levels, none of the explanatory variables solicited in the questionnaire were significantly associated with avian influenza virus isolation positivity. The proportions of variance at the individual market, seller and individual bird levels were 6%, 48% and 46%, respectively. We conclude that the emphasis of avian influenza control efforts in Vietnam should be at the individual seller level as opposed to the market level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.