The millimeter wave frequency spectrum offers unprecedented bandwidths for future broadband cellular networks. This paper presents the world's first empirical measurements for 28 GHz outdoor cellular propagation in New York City. Measurements were made in Manhattan for three different base station locations and 75 receiver locations over distances up to 500 meters. A 400 megachip-per-second channel sounder and directional horn antennas were used to measure propagation characteristics for future mm-wave cellular systems in urban environments. This paper presents measured path loss as a function of the transmitter -receiver separation distance, the angular distribution of received power using directional 24.5 dBi antennas, and power delay profiles observed in New York City. The measured data show that a large number of resolvable multipath components exist in both non line of sight and line of sight environments, with observed multipath excess delay spreads (20 dB) as great as 1388.4 ns and 753.5 ns, respectively. The widely diverse spatial channels observed at any particular location suggest that millimeter wave mobile communication systems with electrically steerable antennas could exploit resolvable multipath components to create viable links for cell sizes on the order of 200 m.
Machine-to-machine (M2M) communications, also known as machine-type communications (MTC) in 3GPP LTE systems, provide autonomous connectivity between machines without human intervention to create new service, e.g., the Internet of Things and the smart grid. M2M communications normally involve a large number of MTC devices (MTCDs) to support a variety of sensor applications. Consequently, concurrent and massive access attempts of MTCDs to radio access networks (RANs) may cause intolerable delay, packet loss, and even service unavailability. In this paper, we propose a joint optimal physical random access channel (PRACH) resource allocation and access control mechanism to address the performance degradation caused by concurrent and massive access attempts of MTCDs in LTE systems. We define the notion of random access efficiency and formulate an optimization problem for maximization of the random access efficiency with random access delay constraint. We also propose a dynamic resource allocation and access control algorithm based on estimation of the number of MTCDs for a system with dynamically varying numbers of massive MTCDs. Then, an analytical model is provided using a discrete-time Markov chain for the proposed mechanism. The effectiveness of the proposed algorithm is demonstrated via analysis and simulations. The proposed algorithm was able to maintain the optimal random access efficiency while satisfying the average random access delay requirement of MTCDs in order to handle massive and dynamic MTCDs per cell.Index Terms-M2M communications, dynamic resource allocation, access control, random access efficiency, optimization 1536-1276 (c)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.