Background/Aims: The use of tyrosine kinase inhibitors (TKIs) to target active epidermal growth factor receptor (EGFR)-harbouring mutations has been effective in patients with advanced non-small-cell lung cancer (NSCLC). However, the use of TKIs in NSCLS patients with somatic EGFR mutations, particularly T790M, causes drug resistance. Thus, in the present study, we investigated overcoming resistance against the TKI gefitinib by combination treatment with melatonin in H1975 NSCLC cells harbouring the T790M somatic mutation. Methods: H1975 and HCC827 cells were treated with melatonin in combination with gefitinib, and cell viability, cell cycle progression, apoptosis, and EGFR, AKT, p38, Bcl-2, Bcl-xL, caspase 3 and Bad protein levels were examined. Results: Treatment with melatonin dose-dependently decreased the viability of H1975 cells harbouring the T790M somatic mutation compared to HCC827 cells with an EGFR active mutation. Melatonin-mediated cell death resulted in decreased phosphorylation of EGFR and Akt, leading to attenuated expression of survival proteins, such as Bcl-2, Bcl-xL and survivin, and activated caspase 3 in H1975 cells, but not in HCC827 cells. However, we did not observe a significant change in expression of cell cycle proteins, such as cyclin D, cyclin A, p21 and CDK4 in H1975 cells. Surprisingly, co-treatment of gefitinib with melatonin effectively decreased the viability of H1975 cells, but not HCC827 cells. Moreover, co-treatment of H1975 cells caused consistent down-regulation of EGFR phosphorylation and induced apoptosis compared to treatment with gefitinib or melatonin alone. Conclusions: Our findings demonstrate that melatonin acts as a potent chemotherapeutic agent by sensitising to gefitinib TKI-resistant H1975 cells that harbour a EGFR T790M mutation.
Background/Aims: Our group reported that cinnamaldehyde derivative, (E)-4-((2-(3-oxopop-1-enyl)phenoxy)methyl)pyridinium malonic acid (CB-PIC) induced apoptosis in hypoxic SW620 colorectal cancer cells via activation of AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase (ERK). Herein, sensitizing effect of CB-PIC was investigated in resistant cancer cells such as paclitaxel (PT) resistant lung cancer cells (H460/PT), and Adriamycin (Adr) resistant breast cancer (MCF7/Adr) and colon cancer (HCT15/cos) cells. Methods: Various drug resistant cell lines were treated with CB-PIC, and the signalling pathway and functional assay were explored by Western blot, Rhodamine assay, FACS, RT-PCR and MTT assay. Results: We found that CB-PIC effectively exerted cytotoxicity, increased sub G1 population and the cleaved form of poly (ADP-ribose) polymerase (PARP) and caspase 9 in drug resistant cancer cells. Furthermore, CB-PIC sensitized resistant cancer cells to adriamycin via downregulation of survival proteins such as survivin, Bcl-xL and Bcl-2, along with MDR1 suppression leading to accumulation of drug in the intracellular region. Of note, CB-PIC transcriptionally decreased MDR1 expression via suppression of STAT3 and AKT signalling in three resistant cancer cells with highly expressed P-glycoprotein. Nonetheless, CB-PIC did not affect transport activity of P-glycoprotein in a short time efflux assay, while epigallocatechin gallate (EGCG) accumulated Rhodamine 123 into intracellular region of cell by direct inhibition of MDR1 transport activity. Conclusions: These data demonstrate that CB-PIC suppresses the P-glycoprotein expression through inhibition of STAT3 and AKT signalling to overcome drug resistance in chemo-resistant cancer cells as a potent chemotherapeutic sensitizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.