Foamed polymers are future materials, considered "green materials" due to their properties with very low consumption of raw materials; they can be used to ameliorate appearance of structures besides contributing for thermal and acoustic insulation. Nevertheless, waste disposal has generated about 20-30% of total of solid volume in landfills besides prejudicing flora and fauna by uncontrolled disposal. The development of biodegradable polymers aims to solve this problem, considering that in 2012, bio-plastics market was evaluated in 1.4 million tons produced and in 2017 attained 6.2 million tons. Biodegradable polymers as poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are thermoplastics which can be processed using the most conventional polymer processing methods. PLA is high in strength and modulus but brittle, while PBAT is flexible and tough. In order to reduce interfacial tension exhibited by PLA/PBAT blends, it was used as compatibilizing agent 5 phr of PLA previously gamma-radiated at 150 kGy. Ionizing radiation induces compatibilization by free radicals, improving the dispersion and adhesion of blend phases, without using chemical additives and at room temperature. As a reinforcement agent, calcium carbonate from avian eggshell waste was used, at 10 ph of micro particles, 125 μm. Admixtures were further processed in a singlescrew extruder, using CO 2 as physical blowing agent (PBA). Property investigations were performed by DSC, TGA, XRD, SEM, FTIR, and mechanical essays.
This paper presents research results of biocidal effect of thermoplastic- polyester-elastomer (TPE-E) with incorporation of hybrid Ag/ZnO/SiO2 NPs (silver/Zinc oxide/SiO2 nanoparticles). These results were compared with various gamma-irradiated doses and processing techniques including extrusion, injection molding and compression molding. In all these processing techniques the TPE-E was mixed with mineral oil and Ag/ZnO/SiO2 nanoparticles. The TPE-E nanocomposites were characterized by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), Infrared FT spectroscopy (FTIR), surface enhanced Raman technique (SERS), FESEM (Field emission scanning electron microscopy), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), TEM (transmission electronic microscopy) and antimicrobial test. Antibacterial activity against E. coli and S. aureus, are reported and these results showed potential application in health care products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.