Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric fieId with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated.
The extensive design effort for KSTAR has been focused on two major aspects of the KSTAR project mission - steady-state-operation capability and advanced tokamak physics. The steady state aspect of the mission is reflected in the choice of superconducting magnets, provision of actively cooled in-vessel components, and long pulse current drive and heating systems. The advanced tokamak aspect of the mission is incorporated in the design features associated with flexible plasma shaping, double null divertor and passive stabilizers, internal control coils and a comprehensive set of diagnostics. Substantial progress in engineering has been made on superconducting magnets, the vacuum vessel, plasma facing components and power supplies. The new KSTAR experimental facility with cryogenic system and deionized water cooling and main power systems has been designed, and the construction work is under way for completion in 2004.
The Korea Superconducting Tokamak Advanced Research (KSTAR) project is the major effort of the national fusion programme of the Republic of Korea. Its aim is to develop a steady state capable advanced superconducting tokamak to establish a scientific and technological basis for an attractive fusion reactor. The major parameters of the tokamak are: major radius 1.8 m, minor radius 0.5 m, toroidal field 3.5 T and plasma current 2 MA, with a strongly shaped plasma cross-section and double null divertor. The initial pulse length provided by the poloidal magnet system is 20 s, but the pulse length can be increased to 300 s through non-inductive current drive. The plasma heating and current drive system consists of neutral beams, ion cyclotron waves, lower hybrid waves and electron cyclotron waves for flexible profile control in advanced tokamak operating modes. A comprehensive set of diagnostics is planned for plasma control, performance evaluation and physics understanding. The project has completed its conceptual design and moved to the engineering design and construction phase. The target date for the first plasma is 2002.
The coupled drift-shear Alfvén mode including the complete Bessel function gyroradius effect and the ∇⊥B -curvature guiding center drift resonance of kinetic theory is solved for the toroidal ballooning mode eigenvalues and eigenfunctions. Comparisons between nonlocal (ballooning) and local kinetic theory and between nonlocal fluid and kinetic theory are made. The critical plasma pressure for kinetic ballooning mode instability is only the same as the magnetohydrodynamic (MHD) theory critical pressure βMHD for ηi=0. The critical kinetic theory plasma pressure βK(ηi) is well below βMHD and the kinetic theory growth rate is unstable for all k. The MHD second stability region is also unstable in the kinetic theory. The kinetic theory growth rate is a maximum around k≤0.3–0.5 for finite aspect ratio εn=rn/R. The effects of trapped electrons are found to be weakly stabilizing both analytically and numerically, and the instability is still significant outside the ideal MHD stable window from the ion magnetic drift resonances when ηi≳1. The kinetic growth rate is a function of the six dimensionless parameters k, q2β, εn, s, ηi, and τ=Te/Ti.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.