BackgroundIn eukaryotic organisms, gene expression is regulated at multiple levels during the processes of transcription and translation. The absence of a tight regulatory network for transcription in the human malaria parasite suggests that gene expression may largely be controlled at post-transcriptional and translational levels.ResultsIn this study, we compare steady-state mRNA and polysome-associated mRNA levels of Plasmodium falciparum at different time points during its asexual cell cycle. For more than 30% of its genes, we observe a delay in peak transcript abundance in the polysomal fraction as compared to the steady-state mRNA fraction, suggestive of strong translational control. Our data show that key regulatory mechanisms could include inhibitory activity of upstream open reading frames and translational repression of the major virulence gene family by intronic transcripts. In addition, we observe polysomal mRNA-specific alternative splicing events and widespread transcription of non-coding transcripts.ConclusionsThese different layers of translational regulation are likely to contribute to a complex network that controls gene expression in this eukaryotic pathogen. Disrupting the mechanisms involved in such translational control could provide novel anti-malarial strategies.
BackgroundReversible modification of proteins through the attachment of ubiquitin or ubiquitin-like modifiers is an essential post-translational regulatory mechanism in eukaryotes. The conjugation of ubiquitin or ubiquitin-like proteins has been demonstrated to play roles in growth, adaptation and homeostasis in all eukaryotes, with perturbation of ubiquitin-mediated systems associated with the pathogenesis of many human diseases, including cancer and neurodegenerative disorders.Methodology/Principal FindingsHere we describe the use of an HMM search of functional Pfam domains found in the key components of the ubiquitin-mediated pathway necessary to activate and reversibly modify target proteins in eight apicomplexan parasitic protozoa for which complete or late-stage genome projects exist. In parallel, the same search was conducted on five model organisms, single-celled and metazoans, to generate data to validate both the search parameters employed and aid paralog classification in Apicomplexa. For each of the 13 species investigated, a set of proteins predicted to be involved in the ubiquitylation pathway has been identified and demonstrates increasing component members of the ubiquitylation pathway correlating with organism and genome complexity. Sequence homology and domain architecture analyses facilitated prediction of apicomplexan-specific protein function, particularly those involved in regulating cell division during these parasite's complex life cycles.Conclusions/SignificanceThis study provides a comprehensive analysis of proteins predicted to be involved in the apicomplexan ubiquitin-mediated pathway. Given the importance of such pathway in a wide variety of cellular processes, our data is a key step in elucidating the biological networks that, in part, direct the pathogenicity of these parasites resulting in a massive impact on global health. Moreover, apicomplexan-specific adaptations of the ubiquitylation pathway may represent new therapeutic targets for much needed drugs against apicomplexan parasites.
Malaria is one of the deadliest infectious diseases worldwide. The most severe form is caused by the eukaryotic protozoan parasite Plasmodium falciparum. Recent studies have highlighted the importance of post-translational regulations for the parasite's progression throughout its life cycle, protein ubiquitylation being certainly one of the most abundant. The specificity of its components and the wide range of biological processes in which it is involved make the ubiquitylation pathway a promising source of suitable targets for anti-malarial drug development. Here, we combined immunofluorescent microscopy, biochemical assays, in silico prediction, and mass spectrometry analysis using the multidimensional protein identification technology, or MudPIT, to describe the P. falciparum ubiquitome. We found that ubiquitin conjugates are detected at every morphological stage of the parasite erythrocytic cycle. Furthermore, we detected that more than half of the parasite's proteome represents possible targets for ubiquitylation, especially proteins found to be present at the most replicative stage of the asexual cycle, the trophozoite stage. A large proportion of ubiquitin conjugates were also detected at the schizont stage, consistent with a cell activity slowdown to prepare for merozoite differentiation and invasion. Finally, for the first time in the human malaria parasite, our results strongly indicate the presence of heterologous mixed conjugations, SUMO/UB. This discovery suggests that sumoylated proteins may be regulated by ubiquitylation in P. falciparum. Altogether, our results present the first stepping stone toward a better understanding of ubiquitylation and its role(s) in the biology of the human malaria parasite.
A major obstacle in understanding the complex biology of the malaria parasite remains to discover how gene transcription is controlled during its life cycle. Accumulating evidence indicates that the parasite’s epigenetic state plays a fundamental role in gene expression and virulence. Using a comprehensive and quantitative mass spectrometry approach, we determined the global and dynamic abundance of histones and their covalent post-transcriptional modifications throughout the intra-erythrocytic developmental cycle of Plasmodium falciparum. We detected a total of 232 distinct modifications, of which 160 had never been detected in Plasmodium and 88 had never been identified in any other species. We further validated over 10% of the detected modifications and their expression patterns by multiple reaction monitoring assays. In addition, we uncovered an unusual chromatin organization with parasite-specific histone modifications and combinatorial dynamics that may be directly related to transcriptional activity, DNA replication, and cell cycle progression. Overall, our data suggest that the malaria parasite has a unique histone modification signature that correlates with parasite virulence.
Apicomplexan parasites are responsible for numerous important human diseases including toxoplasmosis, cryptosporidiosis, and most importantly malaria. There is a constant need for new antimalarials, and one of most keenly pursued drug targets is an ancient algal endosymbiont, the apicoplast. The apicoplast is essential for parasite survival, and several aspects of its metabolism and maintenance have been validated as targets of anti-parasitic drug treatment. Most apicoplast proteins are nuclear encoded and have to be imported into the organelle. Recently, a protein translocon typically required for endoplasmic reticulum associated protein degradation (ERAD) has been proposed to act in apicoplast protein import. Here, we show ubiquitylation to be a conserved and essential component of this process. We identify apicoplast localized ubiquitin activating, conjugating and ligating enzymes in Toxoplasma gondii and Plasmodium falciparum and observe biochemical activity by in vitro reconstitution. Using conditional gene ablation and complementation analysis we link this activity to apicoplast protein import and parasite survival. Our studies suggest ubiquitylation to be a mechanistic requirement of apicoplast protein import independent to the proteasomal degradation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.