As the relative importance of renewable energy in electric power systems increases, the prediction of photovoltaic (PV) power generation has become a crucial technology, for improving stability in the operation of next-generation power systems, such as microgrid and virtual power plants (VPP). In order to improve the accuracy of PV power generation forecasting, a fair amount of research has been applied to weather forecast data (to a learning process). Despite these efforts, the problems of forecasting PV power generation remains challenging since existing methods show limited accuracy due to inappropriate cloud amount forecast data, which are strongly correlated with PV power generation. To address this problem, we propose a PV power forecasting model, including a cloud amount forecasting network trained with satellite images. In addition, our proposed model adopts convolutional self-attention to effectively capture historical features, and thus acquire helpful information from weather forecasts. To show the efficacy of the proposed cloud amount forecast network, we conduct extensive experiments on PV power generation forecasting with and without the cloud amount forecast network. The experimental results show that the Mean Absolute Percentage Error (MAPE) of our proposed prediction model, combined with the cloud amount forecast network, are reduced by 22.5% compared to the model without the cloud amount forecast network.
The problem of Photovoltaic (PV) power generation forecasting is becoming crucial as the penetration level of Distributed Energy Resources (DERs) increases in microgrids and Virtual Power Plants (VPPs). In order to improve the stability of power systems, a fair amount of research has been proposed for increasing prediction performance in practical environments through statistical, machine learning, deep learning, and hybrid approaches. Despite these efforts, the problem of forecasting PV power generation remains to be challenging in power system operations since existing methods show limited accuracy and thus are not sufficiently practical enough to be widely deployed. Many existing methods using long historical data suffer from the long-term dependency problem and are not able to produce high prediction accuracy due to their failure to fully utilize all features of long sequence inputs. To address this problem, we propose a deep learning-based PV power generation forecasting model called Convolutional Self-Attention based Long Short-Term Memory (LSTM). By using the convolutional self-attention mechanism, we can significantly improve prediction accuracy by capturing the local context of the data and generating keys and queries that fit the local context. To validate the applicability of the proposed model, we conduct extensive experiments on both PV power generation forecasting using a real world dataset and power consumption forecasting. The experimental results of power generation forecasting using the real world datasets show that the MAPEs of the proposed model are much lower, in fact by 7.7%, 6%, 3.9% compared to the Deep Neural Network (DNN), LSTM and LSTM with the canonical self-attention, respectively. As for power consumption forecasting, the proposed model exhibits 32%, 17% and 44% lower Mean Absolute Percentage Error (MAPE) than the DNN, LSTM and LSTM with the canonical self-attention, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.