Atrial fibrillation (AF) is the most prevalent arrhythmia and is associated with increased morbidity and mortality. Its early detection is challenging because of the low detection yield of conventional methods. We aimed to develop a deep learning-based algorithm to identify AF during normal sinus rhythm (NSR) using 12-lead electrocardiogram (ECG) findings. We developed a new deep neural network to detect subtle differences in paroxysmal AF (PAF) during NSR using digital data from standard 12-lead ECGs. Raw digital data of 2,412 12-lead ECGs were analyzed. The artificial intelligence (AI) model showed that the optimal interval to detect subtle changes in PAF was within 0.24 s before the QRS complex in the 12-lead ECG. We allocated the enrolled ECGs to the training, internal validation, and testing datasets in a 7:1:2 ratio. Regarding AF identification, the AI-based algorithm showed the following values in the internal and external validation datasets: area under the receiver operating characteristic curve, 0.79 and 0.75; recall, 82% and 77%; specificity, 78% and 72%; F1 score, 75% and 74%; and overall accuracy, 72.8% and 71.2%, respectively. The deep learning-based algorithm using 12-lead ECG demonstrated high accuracy for detecting AF during NSR.
The problem of power demand forecasting for the effective planning and operation of smart grid, renewable energy and electricity market bidding systems is an open challenge. Numerous research efforts have been proposed for improving prediction performance in practical environments through statistical and artificial neural network approaches. Despite these efforts, power demand forecasting problems remain to be a grand challenge since existing methods are not sufficiently practical to be widely deployed due to their limited accuracy. To address this problem, we propose a hybrid power demand forecasting model, called (c, l)-Long Short-Term Memory (LSTM) + Convolution Neural Network (CNN). We consider the power demand as a key value, while we incorporate c different types of contextual information such as temperature, humidity and season as context values in order to preprocess datasets into bivariate sequences consisting of <Key, Context[1, c]> pairs. These c bivariate sequences are then input into c LSTM networks with l layers to extract feature sets. Using these feature sets, a CNN layer outputs a predicted profile of power demand. To assess the applicability of the proposed hybrid method, we conduct extensive experiments using real-world datasets. The results of the experiments indicate that the proposed (c, l)-LSTM+CNN hybrid model performs with higher accuracy than previous approaches.
As the relative importance of renewable energy in electric power systems increases, the prediction of photovoltaic (PV) power generation has become a crucial technology, for improving stability in the operation of next-generation power systems, such as microgrid and virtual power plants (VPP). In order to improve the accuracy of PV power generation forecasting, a fair amount of research has been applied to weather forecast data (to a learning process). Despite these efforts, the problems of forecasting PV power generation remains challenging since existing methods show limited accuracy due to inappropriate cloud amount forecast data, which are strongly correlated with PV power generation. To address this problem, we propose a PV power forecasting model, including a cloud amount forecasting network trained with satellite images. In addition, our proposed model adopts convolutional self-attention to effectively capture historical features, and thus acquire helpful information from weather forecasts. To show the efficacy of the proposed cloud amount forecast network, we conduct extensive experiments on PV power generation forecasting with and without the cloud amount forecast network. The experimental results show that the Mean Absolute Percentage Error (MAPE) of our proposed prediction model, combined with the cloud amount forecast network, are reduced by 22.5% compared to the model without the cloud amount forecast network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.