2021
DOI: 10.1038/s41598-021-92172-5
|View full text |Cite
|
Sign up to set email alerts
|

A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm

Abstract: Atrial fibrillation (AF) is the most prevalent arrhythmia and is associated with increased morbidity and mortality. Its early detection is challenging because of the low detection yield of conventional methods. We aimed to develop a deep learning-based algorithm to identify AF during normal sinus rhythm (NSR) using 12-lead electrocardiogram (ECG) findings. We developed a new deep neural network to detect subtle differences in paroxysmal AF (PAF) during NSR using digital data from standard 12-lead ECGs. Raw dig… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
38
0
4

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 55 publications
(43 citation statements)
references
References 31 publications
1
38
0
4
Order By: Relevance
“…Bei der Arbeit an seinem KI-Projekt ist unser junger Kollege auf neue Studien gestoßen, die zeigen, dass es auch allein anhand eines EKG bei Sinusrhythmus möglich ist, das zukünftige Auftreten von Vorhofflimmern vorherzusagen [ 3 , 5 ]. In diesen Studien wurde KI basierend auf DL eingesetzt (eine Besprechung dieser Arbeiten erfolgt in Teil 2 dieser Übersicht).…”
Section: Ekg-analyse Mithilfe Künstlicher Intelligenzunclassified
“…Bei der Arbeit an seinem KI-Projekt ist unser junger Kollege auf neue Studien gestoßen, die zeigen, dass es auch allein anhand eines EKG bei Sinusrhythmus möglich ist, das zukünftige Auftreten von Vorhofflimmern vorherzusagen [ 3 , 5 ]. In diesen Studien wurde KI basierend auf DL eingesetzt (eine Besprechung dieser Arbeiten erfolgt in Teil 2 dieser Übersicht).…”
Section: Ekg-analyse Mithilfe Künstlicher Intelligenzunclassified
“…The presence of artifacts in ECG images may pose a challenge in the use of convolutional neural network (CNN) in image training. However, the tecent, introduction of recurrent neural networks (RNN) can further minimize potential bias and discriminate AF from normal sinus rhythm [ 25 ]. Consequently, if AI enhanced ECG analysis is implemented and adopted, it may save unnecessary inspection time and costs on follow up diagnostic tests or monitoring devices.…”
Section: Clinical Significancementioning
confidence: 99%
“…It achieves accuracy, sensitivity, and specificity 99.02%, 98.76%, and 99.17%, for model VGG-MI1 and VGG-MI2, an accuracy of 99.22%, a sensitivity of 99.15%, and a specificity of 99.49%. Ali Haider et.al [12] proposed an approach using deep learning for single shoot detection in MobileNet v2. It is used to detect cardiovascular disease.…”
Section: Literature Reviewmentioning
confidence: 99%
“…It has 152 layer models for ImageNet and produces 3.57% top 5 errors. It trains 20 layers for that the training error was low but the test error was high, and this generates overfitting problems [12]. This is for known problems .For the unknown problems, the training error was high and the test error was high.…”
Section: Resnet_50mentioning
confidence: 99%