Abstract. We present a new algorithm to compute the QR factorization of a matrix Am×n intended for use when m n. The algorithm uses a reduction strategy to perform the factorization which in turn allows a good degree of parallelism. It is then integrated into a parallel implementation of the QR factorization with column pivoting algorithm due to Golub and Van Loan, which allows the determination of the rank of A. The algorithms were coded in Fortran 90 using the MPI library. Results are presented for several different problem sizes on an IBM 9076 SP/2 parallel computer.
Un solveur parallèle par pavage pour la résolution des systèmes symétriques indéfinis sur architectures multi-coeurs Résumé : Nous décrivons un algorithme parallèle par pavage efficace et innovant pour résoudre les systèmes symétriques indéfinis sur architectures multi-coeurs. Ce solveur évite de pivoter en utilisant un préconditionnement multiplicatif basé sur une transformation aléatoire symétrique. Cette transformation aléatoire empêche le surcoût de communication lié au pivotage, elle est d'un coût calculatoire faible et nécessite peu de stockage mémoire. A la suite de cette transformation aléatoire, nous utilisons une factorisation LDL T par pavage qui réduit les synchronisations en utilisant un ordonnancement statique ou dynamique. Nous comparons la performance en Gflop/s de notre solveur avec d'autres types de factorisations sur une machine multi-coeurs actuelle et nous proposons des tests de précision en utilisant des cas-tests de LAPACK.
Abstract. This paper illustrates how the communication due to pivoting in the solution of symmetric indefinite linear systems can be reduced by considering innovative approaches that are different from pivoting strategies implemented in current linear algebra libraries. First a tiled algorithm where pivoting is performed within a tile is described and then an alternative to pivoting is proposed. The latter considers a symmetric randomization of the original matrix using the so-called recursive butterfly matrices. In numerical experiments, the accuracy of tile-wise pivoting and of the randomization approach is compared with the accuracy of the Bunch-Kaufman algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.