Deep neural networks are revolutionizing the way complex systems are designed. Consequently, there is a pressing need for tools and techniques for network analysis and certification. To help in addressing that need, we present Marabou, a framework for verifying deep neural networks. Marabou is an SMT-based tool that can answer queries about a network's properties by transforming these queries into constraint satisfaction problems. It can accommodate networks with different activation functions and topologies, and it performs high-level reasoning on the network that can curtail the search space and improve performance. It also supports parallel execution to further enhance scalability. Marabou accepts multiple input formats, including protocol buffer files generated by the popular TensorFlow framework for neural networks. We describe the system architecture and main components, evaluate the technique and discuss ongoing work.
We propose analyzing conditional reasoning by appeal to a notion of intervention on a simulation program, formalizing and subsuming a number of approaches to conditional thinking in the recent AI literature. Our main results include a series of axiomatizations, allowing comparison between this framework and existing frameworks (normality-ordering models, causal structural equation models), and a complexity result establishing NP-completeness of the satisfiability problem. Perhaps surprisingly, some of the basic logical principles common to all existing approaches are invalidated in our causal simulation approach. We suggest that this additional flexibility is important in modeling some intuitive examples.
We propose a formalization of the three-tier causal hierarchy of association, intervention, and counterfactuals as a series of probabilistic logical languages. Our languages are of strictly increasing expressivity, the first capable of expressing quantitative probabilistic reasoning—including conditional independence and Bayesian inference—the second encoding do-calculus reasoning for causal effects, and the third capturing a fully expressive do-calculus for arbitrary counterfactual queries. We give a corresponding series of finitary axiomatizations complete over both structural causal models and probabilistic programs, and show that satisfiability and validity for each language are decidable in polynomial space.
We propose a formalization of the three-tier causal hierarchy of association, intervention, and counterfactuals as a series of probabilistic logical languages. Our languages are of strictly increasing expressivity, the first capable of expressing quantitative probabilistic reasoning-including conditional independence and Bayesian inference-the second encoding do-calculus reasoning for causal effects, and the third capturing a fully expressive do-calculus for arbitrary counterfactual queries. We give a corresponding series of finitary axiomatizations complete over both structural causal models and probabilistic programs, and show that satisfiability and validity for each language are decidable in polynomial space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.