Abstract-Identifying software vulnerabilities is becoming more important as critical and sensitive systems increasingly rely on complex software systems. It has been suggested in previous work that some bugs are only identified as vulnerabilities long after the bug has been made public. These vulnerabilities are known as hidden impact vulnerabilities. This paper discusses existing bug data mining classifiers and present an analysis of vulnerability databases showing the necessity to mine common publicly available bug databases for hidden impact vulnerabilities.We present a vulnerability analysis from January 2006 to April 2011 for two well known software packages: Linux kernel and MySQL. We show that 32% (Linux) and 62% (MySQL) of vulnerabilities discovered in this time period were hidden impact vulnerabilities. We also show that the percentage of hidden impact vulnerabilities in the last two years has increased by 53% for Linux and 10% for MySQL.We then propose a hidden impact vulnerability identification methodology based on text mining classifier for bug databases. Finally, we discuss potential challenges faced by a development team when using such a classifier.
As critical and sensitive systems increasingly rely on complex software systems, identifying software vulnerabilities is becoming increasingly important. It has been suggested in previous work that some bugs are only identified as vulnerabilities long after the bug has been made public. These bugs are known as Hidden Impact Bugs (HIBs). This paper presents a hidden impact bug identification methodology by means of text mining bug databases. The presented methodology utilizes the textual description of the bug report for extracting textual information. The text mining process extracts syntactical information of the bug reports and compresses the information for easier manipulation. The compressed information is then utilized to generate a feature vector that is presented to a classifier. The proposed methodology was tested on Linux vulnerabilities that were discovered in the time period from 2006 to 2011. Three different classifiers were tested and 28% to 88% of the hidden impact bugs were identified correctly by using the textual information from the bug descriptions alone. Further analysis of the Bayesian detection rate showed the applicability of the presented method according to the requirements of a development team.
Resiliency and improved state-awareness of modern critical infrastructures, such as energy production and industrial systems, is becoming increasingly important. As control systems become increasingly complex, the number of inputs and outputs increase. Therefore, in order to maintain sufficient levels of state-awareness, a robust system state monitoring must be implemented that correctly identifies system behavior even when one or more sensors are faulty. Furthermore, as intelligent cyber adversaries become more capable, incorrect values may be fed to the operators. To address these needs, this paper proposes a fuzzy-neural data fusion engine (FN-DFE) for resilient state-awareness of control systems. The designed FN-DFE is composed of a three-layered system consisting of: 1) traditional threshold based alarms; 2) anomalous behavior detector using self-organizing fuzzy logic system; and 3) artificial neural network-based system modeling and prediction. The improved control system state-awareness is achieved via fusing input data from multiple sources and combining them into robust anomaly indicators. In addition, the neural network-based signal predictions are used to augment the resiliency of the system and provide coherent state-awareness despite temporary unavailability of sensory data. The proposed system was integrated and tested with a model of the Idaho National Laboratory's hybrid energy system facility known as HYTEST. Experiment results demonstrate that the proposed FN-DFE provides timely plant performance monitoring and anomaly detection capabilities. It was shown that the system is capable of identifying intrusive behavior significantly earlier than conventional threshold-based alarm systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.