Effects of thermal aging on tensile and Charpy impact properties in 16MND5 steel was investigated, which were aged at 500°C for 0 h, 1000 h, 3000 h, 5000 h. A significant decrease in the yield stress and ultimate tensile strength was observed after thermal aging, while the elongation exhibited a slight decrease follow by an increase aged for 5000 h. What's more, the ductile-to-brittle transition temperature (DBTT) showed a remarkable increase with the prolongation of thermal aging duration. These facts indicate thermal aging caused embrittlement of the steel, which was further investigated by microstructure observation of SEM. The results show cleavage fracture after thermal aging. Furthermore, experimental results at 350°C thermal aging temperature originated from the previous literature were used to analysis the effect of thermal aging temperature. Thus, thermal embrittlement should be taken seriously.
In this paper, the loading path effects on the plane strain elastic-plastic crack-tip stress field are investigated computationally. Three different loading sequences include one proportional loading and two non-proportional loading paths are applied to the modified boundary layer (MBL) model under small-scale yielding conditions. For the same external displacement field applied at the outer boundary of the MBL model, the mode I K field and T-stress field combined as the different loading paths are applied to investigate the influence of the nonproportional loading. The results show that for either the compressive or tensional T-stress, the loading path which applied K field followed by T field generates the lower crack-tip constraint. There is only slightly difference between the proportional loading path and that with the T-stress field following by K field. The results show that it is very important to include the load sequence effects in fracture analysis when dealing with nonproportional loading conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.