Chloride channel 3 (ClC-3), a Cl−/H+ antiporter, has been well established as a member of volume-regulated chloride channels (VRCCs). ClC-3 may be a crucial mediator for activating inflammation-associated signaling pathways by regulating protein phosphorylation. A growing number of studies have indicated that ClC-3 overexpression plays a crucial role in mediating increased plasma low-density lipoprotein levels, vascular endothelium dysfunction, pro-inflammatory activation of macrophages, hyper-proliferation and hyper-migration of vascular smooth muscle cells (VSMCs), as well as oxidative stress and foam cell formation, which are the main factors responsible for atherosclerotic plaque formation in the arterial wall. In the present review, we summarize the molecular structures and classical functions of ClC-3. We further discuss its emerging role in the atherosclerotic process. In conclusion, we explore the potential role of ClC-3 as a therapeutic target for atherosclerosis.
Multi-drug resistance (MDR) is characterized by the resistance of tumor cells to some antitumor drugs with different structures and mechanisms after the use of a single chemotherapy drug or even the first use of the drug. Notably, MDR has become the largest obstacle to the success of gastric cancer chemotherapies. Non-coding RNAs are defined as a class of RNAs that do not have the ability to code protein. They are widely involved in important biological functions in life activities. Multiple lines of evidences demonstrated that ncRNAs are closely related to human cancers including gastric cancer. However, the relationship between ncRNAs and MDR in gastric cancer have been reported, yet not the mechanisms fully clarified. Therefore, in this review, we systematically summarized the detailed molecular mechanisms of lncRNAs (long noncoding RNAs) and miRNAs (microRNAs) associated with MDR in gastric cancer. Additionally, we speculate that the abnormal expression of ncRNAs are likely to be a novel potential therapeutic targets reversing MDR for gastric cancer. The future therapeutics for gastric cancer treatment will probably be more based on ncRNAs that regulate some genes related with MDR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.