The processing regime relevant to superplasticity in the Ti-6Al-4V alloy is identified. The effect is found to be potent in the range 850-900°C at strain rates between 0.001/s and 0.0001/s. Within this regime, mechanical behaviour is characterised by steady-state grain size and negligible cavity formation; electron backscatter diffraction studies confirm a random texture, leaving grain-boundary sliding as the overarching deformation mechanism. Outside of the superplastic regime, grain size refinement involving recrystallisation and the formation of voids and cavities cause macroscopic softening; low ductility results. Stress hardening is correlated to grain growth and accumulation of dislocations. The findings are used to construct a processing map, on which the dominant deformation mechanisms are identified. Physically-based constitutive equations are presented which are faithful to the observed deformation mechanisms. Internal state variables are used to represent the evolution of grain size, dislocation density and void fraction. Material constants are determined using genetic-algorithm optimisation techniques. Finally, the deformation behaviour of this material in an industrially relevant problem is simulated: the inflation of diffusion-bonded material for the manufacture of hollow, lightweight structures.
Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Austempered ductile iron (ADI) is ®nding an ever increasing worldwide market in the automotive and other sectors. It offers a range of mechanical properties superior to those of other cast irons, and shows excellent economic competitiveness with steels and aluminium alloys. The aim of the present research is to develop a generic model that will enable the producers of ADI to optimise their product in terms of microstructure and mechanical properties, hence minimising the need for expensive and exhaustive experimental trials and reducing alloy development lead times.MST/4800
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.