a b s t r a c tThis paper addresses the problem of estimating the density of a future outcome from a multivariate normal model. We propose a class of empirical Bayes predictive densities and evaluate their performances under the Kullback-Leibler (KL) divergence. We show that these empirical Bayes predictive densities dominate the Bayesian predictive density under the uniform prior and thus are minimax under some general conditions. We also establish the asymptotic optimality of these empirical Bayes predictive densities in infinitedimensional parameter spaces through an oracle inequality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.