Long-term interannual and monthly (1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013) data were analyzed to elucidate the effects of meteorological factors and nutrient levels on phytoplankton biomass in the cyanobacteria-dominated Waihai basin of Lake Dianchi. The interannual ln(chl. a) exhibited positive correlations with the mean air temperature, mean minimum air temperature, and mean maximum air temperature; in addition, a positive relationship between Δln(chl. a) and ΔTP was observed throughout the period. Additionally, ln(chl. a) exhibited a positive correlation with the TP concentration, negative correlations with the sunshine hours and wind speed during the dry season, and positive correlations with the TN and TP concentrations during the rainy season. Furthermore, TP was the most influential factor affecting cyanobacterial bloom dynamics throughout the entire period and during the dry season, and TN and TP were the most important factors during the rainy season, as determined by relative importance analysis. The results of this study based on interannual analysis demonstrated that both meteorological factors and nutrient levels have important roles in controlling cyanobacterial bloom dynamics. The relative importance of these factors may change according to precipitation patterns. Thus, climate change regulation and eutrophication management should be considered in strategies for bloom control. Decreasing the TP load should be prioritized throughout the entire period and during the dry season, and decreasing the TN and TP loads should be considered initially during the rainy season. In addition, further studies of more frequent and complete data acquired over a longer period of time should be conducted in the future.
Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
Allometric equations for calculation of tree above‐ground biomass (AGB) form the basis for estimates of forest carbon storage and exchange with the atmosphere. While standard models exist to calculate forest biomass across the tropics, we lack a standardized tool for computing AGB across boreal and temperate regions that comprise the global extratropics. Here we present an integrated R package, allodb, containing systematically selected published allometric equations and proposed functions to compute AGB. The data component of the package is based on 701 woody species identified at 24 large Forest Global Earth Observatory (ForestGEO) forest dynamics plots representing a wide diversity of extratropical forests. A total of 570 parsed allometric equations to estimate individual tree biomass were retrieved, checked and combined using a weighting function designed to ensure optimal equation selection over the full tree size range with smooth transitions across equations. The equation dataset can be customized with built‐in functions that subset the original dataset and add new equations. Although equations were curated based on a limited set of forest communities and number of species, this resource is appropriate for large portions of the global extratropics and can easily be expanded to cover novel forest types.
Soil life supports the functioning and biodiversity of terrestrial ecosystems1,2. Springtails (Collembola) are among the most abundant soil animals regulating soil fertility and flow of energy through above- and belowground food webs3-5. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset collected from 2,470 sites, we estimate total soil springtail biomass at 29 Mt carbon (threefold higher than wild terrestrial vertebrates6) and record peak densities up to 2 million individuals per m2 in the Arctic. Despite a 20-fold biomass difference between tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the increase in temperature. Neither springtail density nor community metabolism were predicted by local species richness, which was highest in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation7,8, and resource limitation7,9,10 in soil communities. Contrasting temperature responses of biomass, diversity and activity of springtail communities suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting major soil functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.