ABSTRACT:The Koshi river basin is a sub-basin of the Ganges shared among China, Nepal, and India. The river system has a high potential for investment in hydropower development and for irrigation in downstream areas. The upper part of the basin contains a substantial reserve of freshwater in the form of snow and glaciers. Climate variability, climate change, and climate extremes might impact on these reserves, and in turn impact on systems that support livelihoods, such as agriculture, biodiversity and related ecosystem services. Climatological variability and trends over the Koshi river basin were studied using RClimDex. Daily temperature data (20 stations) and precipitation data (50 stations) from 1975 to 2010 were used in the analysis. The results show that the frequency and intensity of weather extremes are increasing. The daily maximum temperature (TXx) increased by 0.1 ∘ C decade −1 on average between 1975 and 2010 and the minimum (TNn) by 0.3 ∘ C decade −1 . The number of warm nights increased at all stations. Most of the extreme temperature indices showed a consistently different pattern in the mountains than in the Indo-Gangetic plains, although not all results were statistically significant. The warm days (TX90p), warm nights (TN90p), warm spell duration (WSDI), and diurnal temperature range (DTR) increased at most of the mountain stations; whereas monthly maximum and minimum values of daily maximum temperature, TX90p, cool nights (TN10p), WSDI, cold spell duration indicator (CSDI), DTR decreased at the stations in the Indo-Gangetic plains, while the number of cold days increased. There was an increase in total annual rainfall and rainfall intensity, although no clear long-term linear trend, whereas the number of consecutive dry days increased at almost all stations. The results indicate that the risk of extreme climate events over the basin is increasing, which will increase people's vulnerability and has strong policy implications.
Some new features concerning the diurnal variation of precipitation over the Tibetan Plateau (TP) are revealed from rainfall data acquired by a network of rain gauge stations and estimated by the Climate Precipitation Center Morphing (CMORPH) technique collected during the summer of 2010 and 2011. Maxima in precipitation amount and frequency are associated with the afternoon‐to‐evening precipitation regime at approximately 60% of the stations in the network. CMORPH data also capture this pattern, but miss the late morning peak that occurs at some stations. The timing of maximum occurrence agrees well with the diurnal cycle of synoptic conditions favouring the development of precipitation over this area. There is no distinct west‐to‐east propagation of the diurnal cycle, implying that the diurnal cycle is more driven by local effects than by large‐scale circulation. It turns out that the diurnal cycle in precipitation frequency depends largely on topography and landscape. The geographical transition in precipitation peak time is distinct from hilly regions (daytime peak) towards lakes and valleys (evening‐to‐nocturnal peaks). Stations located in mountainous regions (valleys) tend to experience more precipitation in either late morning or early afternoon (late afternoon or evening). Overall, precipitation amount shows a similar topographic dependence, as does the precipitation frequency, suggesting that local‐scale effects, such as the mountain valley circulation effect, has a great impact on the diurnal variation in precipitation when large‐scale dynamical processes are weak. A possible mechanism for the non‐uniform diurnal cycle of precipitation over the TP is proposed. The major conclusion is that plateau‐scale synoptic systems, as well as local circulation systems caused by the complex topography, should be taken into account when determining the diurnal variation in precipitation over the TP.
Using monthly average, maximum, minimum air temperature and monthly precipitation data from 5 weather stations in Mt. Qomolangma region in China from 1971 to 2004, climatic linear trend, moving average, low-pass filter and accumulated variance analysis methods, the spatial and temporal patterns of the climatic change in this region were analyzed. The main findings can be summarized as follows: (1) There is obvious ascending tendency for the interannual change of air temperature in Mt. Qomolangma region and the ascending tendency of Tingri, the highest station, is the most significant. The rate of increasing air temperature is 0.234 o C/decade in Mt. Qomolangma region, 0.302 o C/decade in Tingri. The air temperature increases more strongly in non-growing season.(2) Compared with China and the global average, the warming of Mt. Qomolangma region occurred early. The linear rates of temperature increase in Mt. Qomolangma region exceed those for China and the global average in the same period. This is attributed to the sensitivity of mountainous regions to climate change. (3) The southern and northern parts of Mt. Qomolangma region are quite different in precipitation changes. Stations in the northern part show increasing trends but are not statistically significant. Nyalam in the southern part shows a decreasing trend and the sudden decreasing of precipitation occurred in the early 1990s. (4) Compared with the previous studies, we find that the warming of Mt. Qomolangma high-elevation region is most significant in China in the same period. The highest automatic meteorological comprehensive observation station in the world set up at the base camp of Mt. Qomolangma with a height of 5032 m a.s.l will play an important role in monitoring the global climate change.
Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956 2003 were analyzed, based on the hydro-data of the two hydrological stations (Lhasa and Tanggya) and the meteorological data of the three meteorological stations (Damxung, Lhasa and Tanggya). The trends and the change points of runoff and climate from 1956 to 2003 were detected using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. The correlations between runoff and climate change were analyzed using multiple linear regression. The major results could be summarized as follows: (1) The annual mean runoff during the last 50 years is characterized by a great fluctuation and a positive trend with two change points (around 1970 and the early 1980s), after which the runoff tended to increase and was increasing intensively in the last 20 years. Besides, the monthly mean runoff with a positive trend is centralized in winter half-year (November to April) and some other months (May, July and September). (2) The trends of the climate change in the study area are generally consistent with the trend of the runoff, but the leading climate factors which aroused the runoff variation are distinct. Precipitation is the dominant factor influencing the annual and monthly mean runoff in summer half year, while temperature is the primary factor in winter season.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.