The Indian Ocean is characterized by its complex physical systems and strong seasonal monsoons. To better understand effects of seasonal monsoon-driven circulation on the bacterioplanktonic community structure in surface waters and the bacterial distribution response to vertical stratification, patterns of seasonal, and vertical distribution of bacterial communities in the Eastern Tropical Indian Ocean were investigated using 16S rRNA gene profiling. Water samples were collected during the Southwest monsoon (from June to August), the fall inter-monsoon (from October and November) and the Northeast monsoon (from December to January), respectively, onboard during three cruises from July 2016 to January 2018. Surface bacterioplankton communities in these three seasons and in the upper water (3–300 m with six depths) during the Northeast monsoon contained a diverse group of taxa, mainly Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi. Redundancy discriminant analysis (RDA) uncovered that temperature, salinity, and dissolved oxygen (DO) were crucial environmental parameters that affected the structure of bacterial community in overall surface samples. However, significant differences in the composition of the bacterial community are likely due to changes in concentrations of salinity during the fall inter-monsoon, while phosphate for both the Southwest monsoon and the Northeast monsoon. Pearson's analysis revealed that the seasonal variation rather than the vertical variation of environmental factors had a more significant impact on the composition of bacterial community. In addition, a clear seasonal pattern of bacterial co-occurrence showed that inter-taxa associations during the fall inter-monsoon were closer than during the Northeast monsoon and the Southwest monsoon. Overall, our results implied clear differences in the composition of bacterial community, with more pronounced seasonal variation compared to the vertical variation in response to environmental changes.
Marine microbial communities assemble along a sediment depth gradient and are responsible for processing organic matter. The high-resolution mechanisms of the vertical assembly processes in marine sediments remain poorly described. We analyzed 31 depth layers of 3 sediment cores from the shallow sediment zone at 3 stations in the Bohai Sea, and obtained high-resolution vertical profiles (2 cm per sample) of microbial communities. We analyzed 78 archaeal and 76 bacterial communities based on 16S rRNA gene amplicon sequencing, together with 14 selected metagenomes. We grouped these samples into three layers (Top, 0-18 cm; Middle, 18-38 cm; and Bottom, below 38 cm) to analyze trends in diversity and assembly processes along the depth gradient. We found that alpha diversity increased for the Thaumarchaeota-dominated archaeal community but decreased for the Proteobacteria-dominated bacterial community as depth increased. The mechanisms determining archaeal community assembly were mostly deterministic, while bacterial community assembly was mostly stochastic. Co-occurrence networks among different taxa and key functional genes revealed a tight community with low modularity in the bottom sediment, and disproportionately more interactions among low abundance ASVs. This suggests a significant contribution to community stabilization by rare taxa, and suggests that the bottom layer, rather than surface sediments may represent a hotspot for benthic microbial interactions.
Nitrite, an intermediate product of the oxidation of ammonia to nitrate (nitrification), accumulates in upper oceans, forming the primary nitrite maximum (PNM). Nitrite concentrations in the PNM are relatively low in the western North Pacific subtropical gyre (wNPSG), where eddies are frequent and intense. To explain these low nitrite concentrations, we investigated nitrification in cyclonic eddies in the wNPSG. We detected relatively low half-saturation constants (i.e., high substrate affinities) for ammonia and nitrite oxidation at 150 to 200 meter water depth. Eddy-induced displacement of high-affinity nitrifiers and increased substrate supply enhanced ammonia and nitrite oxidation, depleting ambient substrate concentrations in the euphotic zone. Nitrite oxidation is more strongly enhanced by the cyclonic eddies than ammonia oxidation, reducing concentrations and accelerating the turnover of nitrite in the PNM. These findings demonstrate a spatial decoupling of the two steps of nitrification in response to mesoscale processes and provide insights into physical-ecological controls on the PNM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.