Video frame interpolation (VFI) is currently a very active research topic, with applications spanning computer vision, post production and video encoding. VFI can be extremely challenging, particularly in sequences containing large motions, occlusions or dynamic textures, where existing approaches fail to offer perceptually robust interpolation performance. In this context, we present a novel deep learning based VFI method, ST-MFNet, based on a Spatio-Temporal Multi-Flow architecture. ST-MFNet employs a new multi-scale multi-flow predictor to estimate many-to-one intermediate flows, which are combined with conventional one-to-one optical flows to capture both large and complex motions. In order to enhance interpolation performance for various textures, a 3D CNN is also employed to model the content dynamics over an extended temporal window. Moreover, ST-MFNet has been trained within an ST-GAN framework, which was originally developed for texture synthesis, with the aim of further improving perceptual interpolation quality. Our approach has been comprehensively evaluated -compared with fourteen state-of-the-art VFI algorithms -clearly demonstrating that ST-MFNet consistently outperforms these benchmarks on varied and representative test datasets, with significant gains up to 1.09dB in PSNR for cases including large motions and dynamic textures. Project page: https://danielism97.github.io/ST-MFNet.
Temporal interpolation has the potential to be a powerful tool for video compression. Existing methods for frame interpolation do not discriminate between video textures and generally invoke a single general model capable of interpolating a wide range of video content. However, past work on video texture analysis and synthesis has shown that different textures exhibit vastly different motion characteristics and they can be divided into three classes (static, dynamic continuous and dynamic discrete). In this work, we study the impact of video textures on video frame interpolation, and propose a novel framework where, given an interpolation algorithm, separate models are trained on different textures. Our study shows that video texture has significant impact on the performance of frame interpolation models and it is beneficial to have separate models specifically adapted to these texture classes, instead of training a single model that tries to learn generic motion. Our results demonstrate that models fine-tuned using our framework achieve, on average, a 0.3dB gain in PSNR on the test set used.
Video frame interpolation (VFI) is one of the fundamental research areas in video processing and there has been extensive research on novel and enhanced interpolation algorithms. The same is not true for quality assessment of the interpolated content. In this paper, we describe a subjective quality study for VFI based on a newly developed video database, BVI-VFI. BVI-VFI contains 36 reference sequences at three different frame rates and 180 distorted videos generated using five conventional and learning based VFI algorithms. Subjective opinion scores have been collected from 60 human participants, and then employed to evaluate eight popular quality metrics, including PSNR, SSIM and LPIPS which are all commonly used for assessing VFI methods. The results indicate that none of these metrics provide acceptable correlation with the perceived quality on interpolated content, with the best-performing metric, LPIPS, offering a SROCC value below 0.6. Our findings show that there is an urgent need to develop a bespoke perceptual quality metric for VFI. The BVI-VFI dataset is publicly available and can be accessed at https://danielism97.github.io/BVI-VFI/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.