Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001–2006 and 2006–2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries.
Abstract:We performed a multi-date composite change detection technique using a dense-time stack of Landsat data to map land-use and land-cover change (LCLUC) in Mainland Southeast Asia (MSEA) with a focus on the expansion of boom crops, primarily tree crops. The supervised classification was performed using Support Vector Machines (SVM), which are supervised non-parametric statistical learning techniques. To select the most suitable SMV classifier and the related parameter settings, we used the training data and performed a two-dimensional grid search with a three-fold internal cross-validation. We worked in seven Landsat footprints and found the linear kernel to be the most suitable for all footprints, but the most suitable regularization parameter C varied across the footprints. We distinguished a total of 41 LCLUCs (13 to 31 classes per footprint) in very dynamic and heterogeneous landscapes. The approach proved useful for distinguishing subtle changes over time and to map a variety of land covers, tree crops, and transformations as long as sufficient training points could be collected for each class. While to date, this approach has only been applied to mapping urban extent and expansion, this study shows that it is also useful for mapping change in rural settings, especially when images from phenologically relevant acquisition dates are included.
The urban transition that has emerged over the past quarter century poses new challenges for mapping land cover/land use change (LCLUC). The growing archives of imagery from various earth-observing satellites have stimulated the development of innovative methods for change detection in long-term time series. We tested two different multi-temporal remote sensing datasets and techniques for mapping the urban transition. Using the Red River Delta of Vietnam as a case study, we compared supervised classification of dense time stacks of Landsat data with trend analyses of an annual series of night-time lights (NTL) data from the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS). The results of each method were corroborated through qualitative and quantitative GIS analyses. We found that these two approaches can be used synergistically, combining the advantages of each to provide a fuller understanding of the urban transition at different spatial scales.
Building on a series of ground breaking reviews that first defined and drew attention to emerging infectious diseases (EID), the ‘convergence model’ was proposed to explain the multifactorial causality of disease emergence. The model broadly hypothesizes disease emergence is driven by the co-incidence of genetic, physical environmental, ecological, and social factors. We developed and tested a model of the emergence of highly pathogenic avian influenza (HPAI) H5N1 based on suspected convergence factors that are mainly associated with land-use change. Building on previous geospatial statistical studies that identified natural and human risk factors associated with urbanization, we added new factors to test whether causal mechanisms and pathogenic landscapes could be more specifically identified. Our findings suggest that urbanization spatially combines risk factors to produce particular types of peri-urban landscapes with significantly higher HPAI H5N1 emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of chicken densities, duck and geese flock size diversities, and fraction of land under rice or aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate measure for potential mixing of host populations and other factors that likely influence viral transmission, significantly improves the model’s predictability. Similarly, landscapes where intensive and extensive forms of poultry production overlap were found at greater risk. These results support the convergence hypothesis in general and demonstrate the potential to improve EID prevention and control by combing geospatial monitoring of these factors along with pathogen surveillance programs.
Abstract:In 1986, the Government of Vietnam implemented free market reforms known as Doi Moi (renovation) that provided private ownership of farms and companies, and encouraged deregulation and foreign investment. Since then, the economy of Vietnam has achieved rapid growth in agricultural and industrial production, construction and housing, and exports and foreign investments, each of which have resulted in momentous landscape transformations. One of the most evident changes is urbanization and an accompanying loss of agricultural lands and open spaces. These rapid changes pose enormous challenges for local populations as well as planning authorities. Accurate and timely data on changes in built-up urban environments are essential for supporting sound urban development. In this study, we applied the Support Vector Machine classification (SVM) to multi-temporal stacks of Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) images from 1993 to 2010 to quantify changes in built-up areas. The SVM classification algorithm produced a highly accurate map of land cover change with an overall accuracy of 95%. The study showed that most urban expansion occurred in the periods 2001-2006 and 2006-2010. The analysis was strengthened by the incorporation of population and other socio-economic data. This study provides state authorities a means to examine correlations between urban growth, spatial expansion, and other socio-economic factors in order to not only assess patterns of urban growth but also become aware of potential environmental, social, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.