This study is the first to systematically quantify, categorize, and map marine macro-debris across the main Hawaiian Islands (MHI), including remote areas (e.g., Niihau, Kahoolawe, and northern Molokai). Aerial surveys were conducted over each island to collect high resolution photos, which were processed into orthorectified imagery and visually analyzed in GIS. The technique provided precise measurements of the quantity, location, type, and size of macro-debris (>0.05m), identifying 20,658 total debris items. Northeastern (windward) shorelines had the highest density of debris. Plastics, including nets, lines, buoys, floats, and foam, comprised 83% of the total count. In addition, the study located six vessels from the 2011 Tōhoku tsunami. These results created a baseline of the location, distribution, and composition of marine macro-debris across the MHI. Resource managers and communities may target high priority areas, particularly along remote coastlines where macro-debris counts were largely undocumented.
The urban transition that has emerged over the past quarter century poses new challenges for mapping land cover/land use change (LCLUC). The growing archives of imagery from various earth-observing satellites have stimulated the development of innovative methods for change detection in long-term time series. We tested two different multi-temporal remote sensing datasets and techniques for mapping the urban transition. Using the Red River Delta of Vietnam as a case study, we compared supervised classification of dense time stacks of Landsat data with trend analyses of an annual series of night-time lights (NTL) data from the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS). The results of each method were corroborated through qualitative and quantitative GIS analyses. We found that these two approaches can be used synergistically, combining the advantages of each to provide a fuller understanding of the urban transition at different spatial scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.