Methylomicrobium album BG8 is an aerobic methanotrophic bacterium that can mitigate environmental methane emission, and is a promising microbial cell factory for the conversion of methane to value-added chemicals. However, the lack of a genome-scale metabolic model (GEM) of M. album BG8 has hindered the development of systems biology and metabolic engineering of this methanotroph. To fill this gap, a high-quality GEM was constructed to facilitate a system-level understanding on the biochemistry of M. album BG8. Next, experimental time-series growth and exometabolomics data were integrated into the model to generate context-specific GEMs. Flux balance analysis (FBA) constrained with experimental data derived from varying levels of methane, oxygen, and biomass were used to model the metabolism of M. album BG8 and investigate the metabolic states that promote the production of biomass and the excretion of carbon dioxide, formate, and acetate. The experimental and modeling results indicated that the system-level metabolic functions of M. album BG8 require a ratio > 1:1 between the oxygen and methane specific uptake rates for optimal growth. Integrative modeling revealed that at a high ratio of oxygen-to-methane uptake flux, carbon dioxide and formate were the preferred excreted compounds; at lower ratios, however, acetate accounted for a larger fraction of the total excreted flux. The results of this study reveal a trade-off between biomass production and organic compound excretion and provide evidence that this trade-off is linked to the ratio between the oxygen and methane specific uptake rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.