Widely used in traditional medicine in Asia and recently introduced in Burkina Faso under the name Beng-tigré, mung bean is a legume consumed throughout the world and more so in India. The objective of this study was to evaluate the cytotoxicity of the mung bean grown and consumed in Burkina Faso and to study its biological properties such as anti-inflammatory and anticancer activity of the natural and sprouted seeds. The cytotoxicity of the extracts was tested on Artemia salina larvae, and the anti-inflammatory activity was evaluated in vitro by albumin denaturation method using diclofenac as reference molecule. The anticancer activity of hydro-ethanol extracts was evaluated on rats made cancerous with 1,2-dimethylhydrazine (DMH) using 5-fluorouracil as reference molecule. The results showed that the highest yield of the plant extraction was observed with the hydro-ethanol solvent, both for the natural form of mung bean (MBN) and for its sprouted form (MBG). The cytotoxicity test showed no toxicity of the extracts toward shrimp larvae. The ethanolic extract of germinated mung bean seeds gave the highest anti-inflammatory activity at 95.13 ± 0.22% inhibition with significant difference ( p < 0.05 ) between the extracts. Cancer induction with DMH was inhibited by both MBN and MBG extracts. The test of preventive effects of the extracts showed the best activity with significant difference in biochemical results. These results confirm that the mung bean grown in Burkina Faso, as a nontoxic legume, is a functional food that can be integrated into the population’s dietary habits for a double interest. Moreover, they open perspectives for the research of active principles of plant origin with anti-inflammatory and anticancer properties.
Chronic non-communicable diseases are becoming more and more recurrent and require the addition of functional foods in our eating habits. Legumes due to their composition in biomolecules could meet this need. Much used in Chinese medicine, the mung bean arouses interest in Burkina Faso. The objective of this study is to perform phytochemical profiling and to evaluate certain biological properties of the mung bean in its natural or germinated state. Qualitative phytochemical screening was carried out by precipitation and differential staining tests. The antimicrobial activity was tested on in vitro growth by the agar medium diffusion method. DPPH and FRAP methods were used to assess antioxidant activity. The antidiabetic activity of hydroethanolic extracts was evaluated on rats rendered diabetic by streptozotocin, with metformin as a reference molecule. Phytochemistry has revealed the presence of phenolic compounds and derivatives in the mung bean, whether in its natural state (MBN) or in its germinated state (MBG). Only the MBG exhibits antimicrobial activity on 70% of the strains used. It appears that the MBG has a reducing power of the DPPH radical with an IC50 of 28 mg/mL compared to the same extract of the MBN, which had an IC50 of 32.5 mg/mL with a difference (p < 0.05) between the extracts. MBN extracts at a dose of 300 milligrams per kilogram of body weight (mg/kg.bw) showed a reduction (p < 0.0001) in glycaemia and kept the body weight of the animals constant throughout the treatment. In addition, the MBN regulated the level of total cholesterol, tryglicerides of LDL, ASAT, ALAT, urea and creatine. These results show that the mung bean grown in Burkina Faso is a health food, which, integrated into dietary habits, could contribute to the prevention of chronic diseases.
Momordica charantia Linn. (Cucurbitaceae), the wild variety of bitter melon, and Morinda lucida Benth (Rubiaceae) were commonly used as a popular folk medicine in Benin. This study aimed to appreciate the ethnopharmacological knowledge and evaluate the antioxidant and anti-inflammatory effects of M. charantia and M. lucida leaves extracts. Semi-structured surveys supported by individual interviews were conducted with herbalists and traditional healers in southern Benin. The antioxidant activities were evaluated by a micro-dilution technique using ABTS and FRAP methods. These activities were supported by cyclic voltammetry analysis. The anti-inflammatory activity was evaluated by the albumin denaturation method. The volatile compounds were analysed by GC-MS analysis. All the respondents involved in this study have good knowledge of the two plants. We identify 21 diseases grouped into five categories of condition. The two plants’ extracts possess variable antioxidant capacity. Indeed, all the active extracts of M. charantia presented an IC50 < 0.078 mg/mL, while the extracts of M. lucida had an IC50 up to 0.21 ± 0.02 mg/mL. For anti-inflammatory activity, a dose-response activity (p < 0.001) was observed in the protein denaturation inhibition rate of the extracts. It should be noted that the highest inhibition rate (98.34 ± 0.12) of the albumin denaturation was observed with M. lucida dichloromethane extract. A total of 59 volatile compounds were identified by GC-MS analysis in the extracts of the two plants. The M. charantia ethyl acetate extract shows the presence of 30 different compounds with a relative abundance of 98.83%, while that of M. lucida shows 24 compounds with a relative abundance of 98.30%. These plants are potential candidates to discover new compounds with therapeutic properties that could be used to solve public health problems.
: Given that cancer is a disease that is rampant in the world and especially in Africa where the population has enormous difficulty in treating it, plants are a safer and less expensive alterna-tive. Cassava is one of the plant species valued in Benin because of its numerous medicinal and nutritional virtues. This study evaluated the biological activities of amygdalin from the organs of three cassava varieties most produced in Benin (BEN, RB, and MJ). HPLC analysis was used to quantify amygdalin in cassava organs and derivatives. Phytochemical screening was performed to determine secondary metabolite groups. DPPH and FRAP methods were used to assess anti-oxidant activity. Cytotoxicity of the extracts was tested on Artemia salina larvae. The an-ti-inflammatory activity was evaluated in vivo on albino mouse paw edema model induced by 5% formalin. The anticancer activity was evaluated in vivo on Wistar rats rendered cancerous by 1,2-dimethylhydrazine (DMH) using 5-fluorouracil as reference molecule. The results showed that the organs of all three-cassava varieties contained glycosides, flavonoids, saponosides, ster-oids, tannins, coumarins, and cyanogenic derivatives. Young stems and fresh leaves of cassava had the highest amygdalin concentration with 11142.99 µg 10 g-1 and 9251.14 µg 10 g-1 respec-tively. The Agbeli derivative was more concentrated in amygdalin with a content of 401.56 µg 10 g-1 than the others derivatives. The antioxidant activity results showed that the amygdalin ex-tracts were found to be DPPH radical scavengers with IC50 values ranging from 0.18 mg mL-1 to 2.35 mg mL-1. The cytotoxicity test showed no toxicity of the extracts toward shrimp larvae. Ad-ministration of amygdalin extracts from the leaves of BEN and MJ varieties prevents inflamma-tory edema. The percentages of edema inhibition varied between 21.77% and 27.89%. These val-ues are similar (p> 0.05) to that of acetylsalicylic acid (25.20%). Amygdalin extract of BEN variety significantly (p<0.0001) reduces edema. Cancer induction with DMH was inhibited by both BEN extract. In both preventive and curative treatments, rats fed with amygdalin extracts showed low anti-cancer activity under the effect of DMH and the significant difference in biochemical results. Thus, the organs of all three cassava varieties studied have secondary metabolites and good an-tioxydant activity. The leaves contain high levels of amygdalin and can be used as an-ti-inflammatory and anticancer agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.