Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) has turned out to be a formidable pandemic. Upcoming evidence from confirmed cases of COVID-19 suggests an anticipated incursion of patients with neurological manifestations in the weeks to come. An expression of the angiotensin-converting enzyme 2 (ACE 2), the cellular receptor for SARS-CoV-2 over the glial cells and neurons have made the brain a potential target. Neurotoxicity may occur as a result of direct, indirect and post-infectious complications. Attention to neurological deficits in COVID-19 is fundamental to ensure appropriate, timely, beneficial management of the affected patients. Most common neurological manifestations seen include dizziness, headache, impaired consciousness, acute cerebrovascular disease, ataxia, and seizures. Anosmia and ageusia have recently been hinted as significant early symptoms in COVID-19. As cases with neurological deficits in COVID-19 emerge, the overall prognosis is yet unknown.
Background Neurological symptoms and complications of Coronavirus disease 2019 (COVID-19) were seldom discussed in the literature initially. Neurological symptoms such as headache, dizziness, anosmia, hypogeusia, and neuralgia are, however, now being reported commonly. Mononeuropathies are rare complications of COVID-19, with most cases associated with prolonged intensive care stay. Case presentation A 61-year-old gentleman with prior history of well-controlled diabetes and hypertension was recently treated for COVID-19 pneumonia with supplemental oxygen and positive pressure ventilation. He now presented with left-sided foot weakness two weeks after recovering from the viral illness. On examination he had normal bulk and tone and a power of 4/5 in proximal and distal muscles of bilateral lower limbs except for ankle dorsiflexion on the left which was 2/5. He also had absent ankle and knee reflexes bilaterally with bilateral flexor plantar reflexes. Since the patient had no back pain and the sensory system was normal, the lesion was localized to the peripheral nerves and a Nerve Conduction Studies and Electromyography (NCS/EMG) was done. NCS/EMG showed findings suggestive of axonal mononeuropathies. Relevant workup done to identify the cause of mononeuropathy was negative including infectious and autoimmune workup. Since diabetes was well-controlled and he had no intensive care stay his findings were presumed to be associated with resolving COVID-19 infection. The patient underwent aggressive daily physical therapy and has started to show improvement in symptoms. Conclusions Complications such as mononeuropathies should be kept in mind in patients recovering from COVID-19 infection, since timely diagnosis can improve clinical outcomes in patients.
Acute inflammatory demyelinating polyradiculoneuropathy (AIDP) and acute motor axonal neuropathy are the most common variants of Guillian-Barre syndrome documented in the Asian population. However, the variability of early neurophysiologic findings in the Asian population compared to western data has not been documented. Eighty-seven cases of AIDP were retrospectively reviewed for their demographic, clinical, electrophysiological, and laboratory data. Mean age of subjects was 31 ± 8 years with males more commonly affected. Motor symptoms (97%) at presentation predominated. Common early nerve conduction findings included low motor amplitudes (85%), recordable sural sensory responses (85%), and absent H-reflex responses (65%). Prolonged F-latencies were found most commonly in posterior tibial nerves (23%) in the lower limbs and median and ulnar nerves (18%) in the upper limbs. Blink reflex (BR) studies were performed in 57 patients and were abnormal in 80% of those with clinical facial weakness and in 17 of 52 patients (33%) with no clinical cranial nerve signs, suggesting subclinical cranial nerve involvement. Abnormal motor and sensory amplitudes are seen early. Prolonged distal latencies, temporal dispersion/conduction blocks and sural sparing pattern are other common early nerve conduction study findings of AIDP seen in the Pakistani population. There are no significant differences in abnormalities of conduction velocities and delayed reflex responses compared to published data. The BR can help in the early diagnosis of AIDP.
Chikungunya viral (CHIKV) fever is often a self-limiting febrile illness associated with severe debilitating arthralgia. Neurological complications associated with CHIKV, although rare, have been reported in literature; however, longitudinally extensive transverse myelitis (LTEM) is rarely associated with it. We present a case of a middle-aged man with a 1-week history of low-grade fever and arthralgia followed by urinary retention and quadriplegia. A sensory level was noted at T2. On subsequent investigations, he was diagnosed with LETM. Although LETM is commonly seen in patients with neuromyelitis optica, the other possible etiologies are inflammatory and parainfectious. To date, only two cases of LETM are reported worldwide in association with CHIKV fever and this is the first case from Pakistan. With frequent chikungunya outbreaks, neurological complications are increasingly seen in clinical practice. The knowledge of these associations will result in their early diagnosis and treatment.
Tetanus remains a significant cause of mortality especially in the developing world. Early diagnosis and institution of treatment is critical to prevent fatal complications. The diagnosis is made on clinical grounds, which may sometimes be difficult, especially in case of localised tetanus. Being able to diagnose tetanus objectively is invaluable in such cases. In this regard, masseter inhibitory reflex (MIR) is a simple neurophysiological test that can be performed at the bedside. Herein, we report a case of craniocervical tetanus that was objectively diagnosed using MIR and adequately treated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.