Parkinson's disease (PD), one of the most common neurodegenerative diseases, is a multifactorial disease caused by both genetic and environmental factors. Although most patients suffering from PD have a sporadic disease, several genetic causes have been identified in recent years, including alpha-synuclein, parkin, PINK1, dardarin (LRRK2), and DJ-1. DJ-1 deletions and point mutations have been found worldwide, and loss of functional protein was shown to cause autosomal recessive PD. Moreover, DJ-1 immunoreactive inclusions are found in other alpha-synucleopathies and tauopathies, indicating that different neurodegenerative diseases might share a common mechanism in which DJ-1 might play a key role. The function of DJ-1 is still unknown; however, it is associated with various cellular processes, including response to oxidative stress, cellular transformation, RNAbinding, androgen-receptor signaling, spermatogenesis, and fertilization. This article reviews the current knowledge on DJ-1, focusing on its importance in the pathogenesis of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.