The enzyme L-asparaginase of Pyrococcus furiosus (PfA) functions as a dimer with each monomer consisting of distinct N-and C-terminal domains (NPfA and CPfA, respectively), connected by a linker. Here we present data to show that NPfA functions as a non-specific molecular chaperone. Independently expressed NPfA refolded spontaneously whereas CPfA formed insoluble aggregates. However, when mixed and refolded together, NPfA augmented CPfA to fold with~90% recovery. NPfA also protected a variety of substrate proteins from thermal and refolding-mediated aggregation as monitored by a reduction in light scattering. The co-appearance of substrate protein with NPfA in antibody pull-down assays as well as in eluted gel filtration peaks indicated direct protein-protein interaction. These interactions were hydrophobic in nature as determined by 8-anilino-1-naphthalene sulfonic acid fluorescence. NPfA inhibited polyglutamine-mediated amyloid formation and also facilitated disintegration of preformed amyloid fibrils of amyloid-b (1-42) as determined by reverse-phase HPLC-based sedimentation assay and thioflavin T binding assays, respectively. Dynamic light scattering experiments suggested that NPfA readily assembled into polydispersed oligomeric species. With no sequence similarity to a-crystallin or any known molecular chaperone, we present here NPfA as a novel molecular chaperone.
Structured digital abstract• Ab amyloid 1-42 and Ab amyloid 1-42 bind by fluorescence technology (View interaction)• alpha-amylase and alpha-amylase bind by light scattering (View interaction)• Ab amyloid 1-42 and Ab amyloid 1-42 bind by transmission electron microscopy (View interaction)• NPfa binds to BCA II by anti tag coimmunoprecipitation (View interaction)• MSG and MSG bind by light scattering (View interaction)
Here, we report the folding and assembly of a Pyrococcus furiosus-derived protein, L-asparaginase (PfA). PfA functions as a homodimer, with each monomer made of distinct N- and C-terminal domains. The purified individual domains as well as single Trp mutant of each domain were subjected to chemical denaturation/renaturation and probed by combination of spectroscopic, chromatographic, quenching and scattering techniques. We found that the N-domain acts like a folding scaffold and assists the folding of remaining polypeptide. The domains displayed sequential folding with the N-domain having higher thermodynamic stability. We report that the extreme thermal stability of PfA is due to the presence of high intersubunit associative forces supported by extensive H-bonding and ionic interactions network. Our results proved that folding cooperativity in a thermophilic, multisubunit protein is dictated by concomitant folding and association of constituent domains directly into a native quaternary structure. This report gives an account of the factors responsible for folding and stability of a therapeutically and industrially important protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.