Elevated temperatures associated with climate change result in crops being exposed to frequent spells of heat stress. Heat stress results in reduced yield in field pea (Pisum sativum L.); it is therefore important to identify cultivars with improved pod and seed retention under heat to mitigate this loss. Objectives were to investigate the effect of heat stress on phenology, yield and pod‐based yield components. Sixteen pea cultivars were evaluated at normal and late (hot) seeding dates in the field in Arizona 2012 and in growth chambers with two temperature regimes (24/18°C and 35/18°C day/night temperature for 7 days) during reproductive development. We measured variation in the pattern of pod retention at four‐node positions on plants, seed retention by ovule position (stylar, medial and basal) within pods and screened cultivars for pod retention, seed retention and yield. Heat stress reduced seed yield by accelerating the crop lifecycle and reducing pod number and seed size. Heat stress had the most damaging effect on younger reproductive growth (flowers and pods developed later), resulting in ovary abortion from developing flowers. Heat also accelerated seed abortion in all ovule positions within pods. Two high‐yielding cultivars under control temperature, “Naparnyk” and “CDC Meadow”, maintained high yield in heat, and “MFR043” had the lowest yield. Cultivars “40‐10” and “Naparnyk” retained the most ovules and seeds per pod, and “MFR043” aborted seeds when exposed to heat. In half of the cultivars, ovules at the basal peduncle end of pods were likely to abort while ovules at the medial and stylar end positions developed into seeds. For seven of the field cultivars, ovules at the medial pod position also produced mature seeds. Cultivars “40‐10”, “Naparnyk” and “CDC Meadow” had greater pod and ovule retention or maintained high yield under heat stress, and were identified as heat‐tolerant cultivars. Our results allow for a better understanding of pod‐based yield components in field pea under heat stress and developing heat‐tolerant cultivars.
Apple production in the Fes-Meknes region of Morocco is highly affected by pests and adverse weather conditions. A survey of apple farmers’ knowledge, perceptions and practices (KPP) in pest management and climate change was conducted in spring 2018 in two major apple-producing provinces of the region. Each farmer reported three insect pests and two diseases on average affecting their orchards. Pest management was performed by a combination of cultural and chemical methods. All farmers used dormant chemical sprays. About 60% of the respondents adopted pest surveillance based on visual inspection and 41.9% chose their pesticides on the basis of the information received from pesticide sellers. An average of 20 treatments per year was applied in each orchard. Regression analysis showed that neither the age of apple trees nor the number of pesticide applications influenced yield. Adverse weather conditions affected all apple plantations and the most frequent problems perceived were frosts, hailstorms, hot winds and water shortage. Of the orchards reported, 51.3% were protected with anti-hail nets. In order to reduce the rate of pesticide applications, better information on integrated pest management is required. Introduction of organic farming is necessary as 40.5% of the farmers agreed to convert to this practice in the future provided that market facilitation is established.
The effects of applied nitrate on symbiotic nitrogen fixation in legumes are complex. Both inhibition and promotion of nodulation by nitrate have been observed in a dose‐dependent manner. The objectives of this study were to determine the effects of nitrate at different concentrations on root nodulation in different genotypes in common bean (Phaseolus vulgaris). Six genotypes were inoculated with the same rhizobial strain and grown hydroponically in growth pouches in a growth chamber and exposed to six nitrate concentrations, including 0, 2.5, 5, 10, 15, and 20 mM for 4 weeks. The tested genotypes included three recombinant inbred lines (RILs, 25, 46, and 70) that differed in their responses to nitrogen (based on observations of one field growing season), their parents (Mist and Sanilac—registered varieties), which are different in N‐fixing abilities, and one nonnodulating mutant (R99). Our results showed that small amounts of nitrate (2.5 and 5 mM) promoted nodule formation and increased nodule biomass, compared with plants in the 0 nitrate control treatment. In contrast, nitrate concentrations over 10 mM inhibited nodulation, resulting in reductions in nodule number and nodule biomass. Nodulation was completely inhibited by 15‐mM nitrate in all the genotypes. Regression analyses indicated that 5‐mM nitrate is the optimum concentration for promoting nodulation as measured by the total number of nodules formed, the number of effective nodules formed, and the nodule biomass formed. In contrast, nitrogen fixation was inhibited by all levels of nitrate. No genotypic differences were observed in nodulation among the three RILs and their parental cultivars, but all were significantly different than R99, a nonnodulating mutant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.