A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tt events under typical 2011 pileup conditions, the average trackreconstruction efficiency for promptly-produced charged particles with transverse momenta of p T > 0.9 GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p T = 100 GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p T , and respectively, 10 µm and 30 µm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10-12 µm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.
Results on two-particle angular correlations for charged particles produced in pp collisions at a centerof-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 nb −1 . The correlations are studied over a broad range of pseudorapidity (jηj < 2.4) and over the full azimuth (ϕ) as a function of charged particle multiplicity and transverse momentum (p T ). In high-multiplicity events, a long-range (jΔηj > 2.0), near-side (Δϕ ≈ 0) structure emerges in the two-particle Δη-Δϕ correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0 < p T < 2.0 GeV=c and an approximately linear increase with the charged particle multiplicity, with an overall correlation strength similar to that found in earlier pp data at ffiffi ffi s p ¼ 7 TeV. The present measurement extends the study of near-side long-range correlations up to charged particle multiplicities N ch ∼ 180, a region so far unexplored in pp collisions. The observed longrange correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.
We present the philosophy, design, and initial evaluation of the Trio Testbed, a new outdoor sensor network deployment that consists of 557 solar-powered motes, seven gateway nodes, and a root server. The testbed covers an area of approximately 50,000 square meters and was in continuous operation during the last four months of 2005. This new testbed in one of the largest solar-powered outdoor sensor networks ever constructed and it offers a unique platform on which both systems and application software can be tested safely at scale. The testbed is based on Trio, a new mote platform that provides sustainable operation, enables efficient in situ interaction, and supports fail-safe programming. The motivation behind this testbed was to evaluate robust multi-target tracking algorithms at scale. However, using the testbed has stressed the system software, networking protocols, and management tools in ways that have exposed subtle but serious weaknesses that were never discovered using indoor testbeds or smaller deployments. We have been iteratively improving our support software, with the eventual aim of creating a stable hardware-software platform for sustainable, scalable, and flexible testbed deployments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.