a b s t r a c tThe Atlas Mountains in Morocco are considered as type examples of intracontinental mountain chains, with high topography that contrasts with moderate crustal shortening and thickening. Whereas recent geological studies and geodynamic modelling suggest the existence of dynamic topography to explain this apparent contradiction, there is a lack of modern geophysical data at the crustal scale to corroborate this hypothesis. To address this deficiency, magnetotelluric data were recently acquired that image the electrical resistivity distribution of the crust from the Middle Atlas to the Anti-Atlas, crossing the tabular Moulouya plain and the High Atlas. All tectonic units show different, distinct and unique electrical signatures throughout the crust reflecting the tectonic history of development of each one. In the upper crust, electrical resistivity values and geometries can be associated to sediment sequences in the Moulouya and Anti-Atlas and to crustal scale fault systems in the High Atlas developed likely during Cenozoic times. In the lower crust, the low resistivity anomaly found below the Moulouya plain, together with other geophysical (low velocity anomaly, lack of earthquakes and minimum Bouguer anomaly) and geochemical (Neogene-Quaternary intraplate alkaline volcanic fields) evidences, infer the existence of a small degree of partial melt at the base of the crust. Resistivity values suggest a partial melt fraction of the order of 2-8%. The low resistivity anomaly found below the Anti-Atlas may be associated with a relict subduction of Precambrian oceanic sediments, or to precipitated minerals during the release of fluids from the mantle during the accretion of the Anti-Atlas to the West African Supercontinent during the Panafrican orogeny (ca. 685 Ma).
Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in interpreting electrical conductivity tomograms. That said, new experimental data provide evidence regarding the strong role of alteration in the vicinity of preferential fluid flow paths including magmatic conduits and hydrothermal vents.
New magnetotelluric soundings at 64 locations throughout the central Rae craton on mainland Nunavut constrain 2-D resistivity models of the crust and lithospheric mantle beneath three regional transects. Responses determined from colocated broadband and long-period magnetotelluric recording instruments enabled resistivity imaging to depths of > 300 km. Strike analysis and distortion decomposition on all data reveal a regional trend of 45-53°, but locally the geoelectric strike angle varies laterally and with depth. The 2-D models reveal a resistive upper crust to depths of 15-35 km that is underlain by a conductive layer that appears to be discontinuous at or near major mapped geological boundaries. Surface projections of the conductive layer coincide with areas of high grade, Archean metasedimentary rocks. Tectonic burial of these rocks and thickening of the crust occurred during the Paleoproterozoic Arrowsmith (2.3 Ga) and Trans-Hudson orogenies (1.85 Ga). Overall, the uppermost mantle of the Rae craton shows resistivity values that range from 3000 Ω m in the northeast (beneath Baffin Island and the Melville Peninsula) to~10,000 Ω m beneath the central Rae craton, to >50,000 Ω m in the south near the Hearne Domain. Near-vertical zones of reduced resistivity are identified within the uppermost mantle lithosphere that may be related to areas affected by mantle melt or metasomatism associated with emplacement of Hudsonian granites. A regional decrease in resistivities to values of~500 Ω m at depths of 180-220 km, increasing to 300 km near the southern margin of the Rae craton, is interpreted as the lithosphere-asthenosphere boundary.
Accurate geophysical imaging of shallow subsurface features provides crucial constraints on understanding the dynamics of volcanic systems. At Furnas Volcano (Azores), intense circulation of volcanic fluids at depth leading to high CO 2 outgassing and flank destabilization poses considerable threat to the local population. Presented is a novel 3-D electrical resistivity model developed from 39 magnetotelluric soundings that images the hydrothermal system of the Furnas Volcano to a depth of 1 km. The resistivity model images two conductive zones, one at 100 m and another at 500 m depth, separated by a resistive layer. The shallow conductor has conductivity less than 1 S m −1 , which can be explained by clay mineral surface conduction with a mass fraction of at least 20 per cent smectite. The deeper conductor extends across the majority of the survey area. This deeper conductor is located at depths where smectite is generally replaced by chlorite and we interpret it as aqueous fluids near the boiling point and infer temperatures of at least 240 • C. The less conductive layer found between these conductors is probably steam-dominated, and coincides within the mixed-clay zone found in many volcanic hydrothermal systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.