Opto-mechanical interactions in planar photonic integrated circuits draw great interest in basic research and applications. However, opto-mechanics is practically absent in the most technologically significant photonics platform: silicon on insulator. Previous demonstrations required the under-etching and suspension of silicon structures. Here we present surface acoustic wave-photonic devices in silicon on insulator, up to 8 GHz frequency. Surface waves are launched through absorption of modulated pump light in metallic gratings and thermo-elastic expansion. The surface waves are detected through photo-elastic modulation of an optical probe in standard race-track resonators. Devices do not involve piezo-electric actuation, suspension of waveguides or hybrid material integration. Wavelength conversion of incident microwave signals and acoustic true time delays up to 40 ns are demonstrated on-chip. Lastly, discrete-time microwave-photonic filters with up to six taps and 20 MHz-wide passbands are realized using acoustic delays. The concept is suitable for integrated microwave-photonics signal processing.
Dense wavelength division multiplexers are key components of data communication networks. This paper presents a silicon-photonic eight-channel multiplexer device with a channel spacing of only 0.133 nm (17 GHz). Devices were fabricated in a commercial silicon foundry, in 8" silicon-on-insulator wafers. The device layout consists of seven unbalanced Mach-Zehnder interferometers in a cascaded tree topology, and each interferometer unit also includes a nested ring resonator element. The transfer function of each unit is that of a maximally flat, autoregressive, moving-average filter. The devices are characterized by uniform passbands, sharp spectral transitions between pass and stop bands, and strong out-of-band rejection. The worst-case optical power crosstalk is −22 dB. The proper function of the device requires careful control of optical phase delays over 14 distinct optical paths. Post-fabrication trimming of phase delays was performed through local illumination of a photo-sensitive upper cladding layer of chalcogenide glass. The de-multiplexing of three adjacent QAM-16, 40 Gbit/s wavelength-division channels was successfully demonstrated. The devices are applicable in data communication and in integrated-photonic processing of radio-over-fiber waveforms.
Gallium-nitride (GaN) is a promising material platform for integrated electro-optic devices due to its wide direct bandgap, pronounced nonlinearities and high optical damage threshold. Low-loss ridge waveguides in GaN layers were recently demonstrated. In this work we provide a first report of four-wave mixing in a GaN waveguide at telecommunication wavelengths, and observe comparatively high nonlinear propagation parameters. The nonlinear coefficient of the waveguide is measured as 1.6±0.45 [Wm] -1 , and the corresponding third-order nonlinear parameter of GaN is estimated as 3.4±1e-18 [m 2 /W]. The results suggest that GaN waveguides could be instrumental in nonlinear-optical signal processing applications.
The postfabrication modification of the group delay in silicon-photonic waveguides is proposed, simulated and demonstrated experimentally. Group delay variations of 2% are achieved through photo-induced changes to an upper cladding layer of photosensitive As₁₀Se₉₀ chalcogenide glass. The illumination of the cladding layer by intense green light for a few seconds leads to mass transfer and removal of material, away from irradiated regions. The phenomenon is employed in the localized removal of the cladding layer from above the core region of a silicon-on-insulator waveguide, thereby modifying its phase and group delays. Using the proposed method, the free spectral range of a chalcogenide-on-silicon Mach-Zehnder interferometer was modified by 1%. The technique is applicable to the postfabrication adjustment of the frequency response of silicon-photonic filters, comprised of several cascaded elements.
The stable one-time tuning of silicon-photonic directional couplers, over a broad range of coupling ratios, is achieved through the selective photo-removal of an upper cladding layer of chalcogenide glass. Analysis shows that the coupling coefficient per unit length between two parallel fully-etched silicon waveguides may be changed by 45%. The power coupling ratio of a 50 µm-long directional coupler between two such waveguides may be tuned arbitrarily between 0 and 1, with weak residual wavelength dependence. Smaller modifications in the coupling coefficient per unit length are obtained between two partially-etched ridge waveguides, on the order of 10%. The proposed procedure is demonstrated in the post-fabrication tuning of transmission notches of a race-track resonator, from over-coupling through critical coupling to weak coupling. The extinction ratio of specific resonances is varied between 4 and 40 dB. The coupling ratio of a tuned device remains stable following three months of storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.