The diabetes classification system is very useful in the health sector. This paper discusses the classification system for diabetes using the K-Means algorithm. The Pima Indian Diabetes (PID) dataset is used to train and evaluate this algorithm. The unbalanced value range in the attributes affects the quality of the classification result, so it is necessary to preprocess the data which is expected to improve the accuracy of the PID dataset classification result. Two types of preprocessing methods are used that are min-max normalization and z-score normalization. These two normalization methods are used and the classification accuracies are compared. Before the data classification process is carried out, the data is divided into training data and test data. The result of the classification test using the K-Means algorithm has shown that the best accuracy lies in the PID dataset which has been normalized using the min-max normalization method, which 79% compared to z-score normalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.