The kinetics of the flash-induced photodissociation and rebinding of carbon monoxide in cytochrome aa3-CO have been studied by time-resolved infrared (TRIR) and transient ultraviolet-visible (UV-vis) spectroscopy at room temperature and by Fourier transform infrared (FTIR) spectroscopy at low temperature. The binding of photodissociated CO to CuB+ at room temperature is conclusively established by the TRIR absorption at 2061 cm-1 due to the C-O stretching mode of the CuB(+)-CO complex. These measurements yield a first-order rate constant of (4.7 +/- 0.6) x 10(5) s-1 (t1/2 = 1.5 +/- 0.2 microseconds) for the dissociation of CO from the CuB(+)-CO complex into solution. The rate of rebinding of flash-photodissociated CO to cytochrome a(3)2+ exhibits saturation kinetics at [CO] > 1 mM due to a preequilibrium between CO in solution and the CuB(+)-CO complex (K1 = 87 M-1), followed by transfer of CO to cytochrome a(3)2+ (k2 = 1030 s-1). The CO transfer from CuB to Fe alpha 3 was followed by CO-FTIR between 158 and 179 K and by UV-vis at room temperature. The activation parameters over the temperature range 140-300 K are delta H++ = 10.0 kcal mol-1 and delta S++ = -12.0 cal mol-1 K-1. The value of delta H++ is temperature independent over this range; i.e., delta Cp++ = 0 for CO transfer. Rapid events following photodissociation and preceding rebinding of CO to cytochrome a(3)2+ were observed. An increase in the alpha-band of cytochrome a3 near 615 nm (t1/2 ca. 6 ps) follows the initial femtosecond time-scale events accompanying photodissociation. Subsequently, a decrease is observed in the alpha-band absorbance (t1/2 approximately 1 microsecond) to a value typical of unliganded cytochrome a3. This latter absorbance change appears to occur simultaneously with the loss of CO by CuB+. We ascribe these observations to structural changes at the cytochrome a3 induced by the formation and dissociation of the CuB(+)-CO complex. We suggest that the picosecond binding of photodissociated CO to CuB triggers the release of a ligand L from CuB. We infer that L then binds to cytochrome a3 on the distal side and that this process is directly responsible for the observed alpha-band absorbance changes. We have previously suggested that the transfer of L produces a transient five-coordinate high-spin cytochrome a3 species where the proximal histidine has been replaced by L. When CO binds to the enzyme from solution, these processes are reversed.(ABSTRACT TRUNCATED AT 400 WORDS)
Photodissociation of fully reduced, carbonmonoxy cytochrome bo3 causes ultrafast transfer of carbon monoxide (C triple bond O) from heme iron to CuB in the binuclear site. At low temperatures, the C triple bond O remains bound to CuB for extended times. Here, we show that the binding of C triple bond O to CuB perturbs the IR stretch of an un-ionized carboxylic acid residue, which is identified as Glu286 by mutation to Asp or to Cys. Before photodissociation, the carbonyl (C=O)-stretching frequency of this carboxylic acid residue is 1726 cm-1 for Glu286 and 1759 cm-1 for Glu286Asp. These frequencies are definitive evidence for un-ionized R-COOH and suggest that the carboxylic acids are hydrogen-bonded, though more extensively in Glu286. In Glu286Cys, this IR feature is lost altogether. We ascribe the frequency shifts in the C=O IR absorptions to the effects of binding photodissociated C triple bond O to CuB, which are relay ed to the 286 locus. Conversely, the 2065 cm-1 C triple bond O stretch of CuB-CO is markedly affected by both mutations. These effects are ascribed to changes in the Lewis acidity of CuB, or to displacement of a CuB histidine ligand by C triple bond O. C triple bond O binding to CuB also induces a downshift of an IR band which can be attributed to an aromatic C-H stretch, possibly of histidine imidazole, at about 3140 cm-1. The results suggest an easily polarizable, through-bond connectivity between one of the histidine CuB ligands and the carboxylic group of Glu286. A chain of bound water molecules may provide such a connection, which is of interest in the context of the proton pump mechanism of the heme-copper oxidases.
Unliganded and cyano derivatives of cytochrome ba3 from Thermus thermophilus have been examined by UV-vis, EPR, and resonance Raman spectroscopies. Species of cytochrome ba3 investigated include its resting, as-isolated, fully oxidized state, the fully reduced, unliganded enzyme, the one-electron-reduced cyano complex, the three-electron-reduced cyano complex, and the fully reduced cyano complex. Results are compared to those obtained from similar adducts of bovine cytochrome aa3, in particular, the fully reduced cyano complex. Our objective was to identify structural similarities and differences at the ligand-binding binuclear site of the two enzymes. We observed that the inner core skeletal vibrations of cytochrome a3 are the same for similar adducts of the bacterial ba3 and mammalian aa3, indicating similar spin and iron-porphyrin coordination properties resulting in comparable porphyrin core geometries. On the other hand, many of the vibrational frequencies associated with the formyl and vinyl peripheral substituents, and the outer pyrrole carbon atoms differ between the bovine and bacterial enzymes. Use of 57Fe labeled ba3 allows identification of two separate vFe-N(His) frequencies displayed by the fully reduced, unliganded cytochrome. These frequencies, occurring at 193 and 209 cm-1, are ascribed to distinct protein conformers, which are best evidenced by the Fe-N(His) vibrations. This result is again in contrast to the bovine enzyme which has been shown by others to display a single Fe-N(His) stretching frequency at 214 cm-1. The low-frequency Fea3(2+)-CN- vibrations of the three-electron and fully reduced cyano complexes of cytochrome ba3 are identified by using 15N and 13C isotopomers of CN-. These spectral signatures are identical to those reported earlier for the one-electron-reduced cyanide adduct (cytochrome a3 reduced), showing that the Fea3(2+)-CN- vibrational frequencies are independent of the redox states of the other three metal centers. Similarly, the CuB2+ EPR signatures appear similar in both the one-electron- and three-electron-reduced cyanide adducts. On the other hand, the electronic absorption spectra of ferrous alpha 3-CN- show systematic red-shifts of the alpha band as each of the other metal centers is reduced, and other, more subtle, differences in the electronic absorptions of the three-electron-reduced and four-electron-reduced cyanide adducts are revealed in the difference spectra. The relevance of these findings toward explaining the different cyanide binding and redox chemistry described herein and toward establishing the extent of structural analogy between the oxygen binding sites of the two proteins is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.