BackgroundThe pollen grain contains the male gametophyte that extends a pollen tube that grows through female tissues in order to deliver sperm to the embryo sac for double fertilization. Growing pollen tubes form periodic callose plugs that are thought to block off the older parts of the tube and maintain the cytoplasm near the growing tip. The morphology of callose plugs and the patterns of their deposition were previously shown to vary among species, but variation within a species had not been examined. We therefore systematically examined callose plug deposition in Arabidopsis thaliana ecotypes, tested for heritability using reciprocal crosses between ecotypes that had differing deposition patterns, and investigated the relationship between callose plugs and pollen tube growth rate. We also surveyed callose plug deposition patterns in different species of tomato.ResultsWe used in vitro grown pollen tubes of 14 different A. thaliana ecotypes and measured the distance from the pollen grain pore to the first callose plug (termed first interval). This distance varied among Arabidopsis ecotypes and in some cases even within an ecotype. Pollen tubes without a callose plug were shorter than those with a callose plug, and tubes with a callose plug near the grain were, on average, longer than those with the first callose plug farther from the grain. Variations in the first callose plug position were also observed between different species of tomato.ConclusionsWe showed that the position of the first callose plug varied among Arabidopsis ecotypes and in tomato species, and that callose plug deposition patterns were heritable. These findings lay a foundation for mapping genes that regulate callose plug deposition or that determine pollen tube length or growth rate.
The active form of vitamin B6, pyridoxal 5’-phosphate (PLP), plays an essential role in the catalytic mechanism of various proteins, including human glutamate-oxaloacetate transaminase (hGOT1), an important enzyme in amino acid metabolism. A recent molecular and genetic study showed that the E266K, R267H, and P300L substitutions in aspartate aminotransferase, the Arabidopsis analog of hGOT1, genetically suppress a developmentally arrested Arabidopsis RUS mutant. Furthermore, CD analyses suggested that the variants exist as apo proteins and implicated a possible role of PLP in the regulation of PLP homeostasis and metabolic pathways. In this work, we assessed the stability of PLP bound to hGOT1 for the three variant and wildtype (WT) proteins using a combined 6 μs of molecular dynamics (MD) simulation. For the variants and WT in the holo form, the MD simulations reproduced the “closed-open” transition needed for substrate binding. This conformational transition was associated with the rearrangement of the P15-R32 small domain loop providing substrate access to the R387/R293 binding motif. We also showed that formation of the dimer interface is essential for PLP affinity to the active site. The position of PLP in the WT binding site was stabilized by a unique hydrogen bond network of the phosphate binding cup, which placed the cofactor for formation of the covalent Schiff base linkage with K259 for catalysis. The amino acid substitutions at positions 266, 267, and 300 reduced the structural correlation between PLP and the protein active site and/or integrity of the dimer interface. Principal component analysis and energy decomposition clearly suggested dimer misalignment and dissociation for the three variants tested in our work. The low affinity of PLP in the hGOT1 variants observed in our computational work provided structural rationale for the possible role of vitamin B6 in regulating metabolic pathways.
Pyridoxal-5'-phosphate (PLP), the enzymatic cofactor form of Vitamin B6 (vitB6), is a versatile compound that has essential roles in metabolism. Cellular PLP homeostasic regulation is currently not well understood. Here we report that in Arabidopsis, biosynthesized PLP is sequestered by specific aminotransferases (ATs), and that the proteins ROOT UV-B SENSITIVE 1 (RUS1) and RUS2 function with ATs to regulate PLP homeostasis. The stunted growth phenotypes of rus1 and rus2 mutants were previously shown to be rescuable by exogenously supplied vitB6. Specific residue changes near the PLP-binding pocket in ASPARTATE AMINOTRANSFERASE2 (ASP2) also rescued rus1 and rus2 phenotypes. In this study, saturated suppressor screens identified 14 additional suppressor of rus (sor) alleles in four aminotransferase genes (ASP1, ASP2, ASP3, or ALANIN AMINOTRANSFERASE1 (AAT1)), which suppressed the rus phenotypes to varying degrees. Each of the sor mutations altered an amino acid in the PLP-binding pocket of the protein, and sor proteins were found to have reduced levels of PLP conjugation. Genetic data revealed that the availability of PLP normally requires both RUS1 and RUS2, and that increasing the number of sor mutants additively enhanced the suppression of rus phenotypes. Biochemical results showed that RUS1 and RUS2 physically interacted with ATs. Our studies suggest a mechanism in which RUS1, RUS2 and specific ATs work together to regulate PLP homeostasis in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.