In skin, Cutibacterium acnes (former Propionibacterium acnes ) can behave as an opportunistic pathogen, depending on the strain and environmental conditions. Acneic strains of C. acnes form biofilms inside skin–gland hollows, inducing inflammation and skin disorders. The essential exogenous products of C. acnes accumulate in the extracellular matrix of the biofilm, conferring essential bacterial functions to this structure. However, little is known about the actual composition of the biofilm matrix of C. acnes . Here, we developed a new technique for the extraction of the biofilm matrix of Gram-positive bacteria without the use of chemical or enzymatic digestion, known to be a source of artifacts. Our method is based on the physical separation of the cells and matrix of sonicated biofilms by ultracentrifugation through a CsCl gradient. Biofilms were grown on the surface of cellulose acetate filters, and the biomass was collected without contamination by the growth medium. The biofilm matrix of the acneic C. acnes RT5 strain appears to consist mainly of polysaccharides. The following is the ratio of the main matrix components: 62.6% polysaccharides, 9.6% proteins, 4.0% DNA, and 23.8% other compounds (porphyrins precursors and other). The chemical structure of the major polysaccharide was determined using a nuclear magnetic resonance technique, the formula being →6)-α- D -Gal p -(1→4)-β- D -Man p NAc3NAcA-(1→6)-α- D -Glc p -(1→4)-β- D -Man p NAc3NAcA-(1→3)-β-Gal p NAc-(1→. We detected 447 proteins in the matrix, of which the most abundant were the chaperonin GroL, the elongation factors EF-Tu and EF-G, several enzymes of glycolysis, and proteins of unknown function. The matrix also contained more than 20 hydrolases of various substrata, pathogenicity factors, and many intracellular proteins and enzymes. We also performed surface-enhanced Raman spectroscopy analysis of the C. acnes RT5 matrix for the first time, providing the surface-enhanced Raman scattering (SERS) profiles of the C. acnes RT5 biofilm matrix and biofilm biomass. The difference between the matrix and biofilm biomass spectra showed successful matrix extraction rather than simply the presence of cell debris after sonication. These data show the complexity of the biofilm matrix composition and should be essential for the development of new anti- C. acnes biofilms and potential antibiofilm drugs.
In this study, the effect of epinephrine on the biofilm formation of Micrococcus luteus C01 isolated from human skin was investigated in depth for the first time. This hormone has a complex effect on biofilms in various systems. In a system with polytetrafluoroethylene (PTFE) cubes, treatment with epinephrine at a physiological concentration of 4.9 × 10 −9 M increased the total amount of 72-h biofilm biomass stained with crystal violet and increased the metabolic activity of biofilms, but at higher and lower concentrations, the treatment had no significant effect. On glass fiber filters, treatment with the hormone decreased the number of colony forming units (CFUs) and changed the aggregation but did not affect the metabolic activity of biofilm cells. In glass bottom plates examined by confocal microscopy, epinephrine notably inhibited the growth of biofilms. RNA-seq analysis and RT–PCR demonstrated reproducible upregulation of genes encoding Fe–S cluster assembly factors and cyanide detoxification sulfurtransferase, whereas genes encoding the co-chaperone GroES, the LysE superfamily of lysine exporters, short-chain alcohol dehydrogenase and the potential c-di-GMP phosphotransferase were downregulated. Our results suggest that epinephrine may stimulate matrix synthesis in M. luteus biofilms, thereby increasing the activity of NAD(H) oxidoreductases. Potential c-di-GMP pathway proteins are essential in these processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.