The location of major quantitative trait loci (QTL) contributing to stem and leaf [Na
SummaryThe correct design of experimental studies, the selection of the appropriate statistical analysis of data and the efficient presentation of results are key to the good conduct and communication of science. The last Guidance for the use and presentation of statistics in Weed Research was published in 1988. Since then, there have been developments in both the scope of research covered by the journal and in the statistical techniques available. This paper addresses the changes in statistics and provides a reference work that will aid researchers in the design and analysis of their work. It will also provide guidance for editors and reviewers. The paper is organised into sections, which will aid the selection of relevant paragraphs, as we recognise that particular approaches require particular statistical analysis. It also uses examples, questions and checklists, so that non-specialists can work towards the correct approach. Statistics can be complex, so knowing when to seek specialist advice is important. The structure and layout of this contribution should help weed scientists, but it cannot provide a comprehensive guide to every technique. Therefore, we provide references to further reading. We would like to reinforce the idea that statistical methods are not a set of recipes whose mindless application is required by convention; each experiment or study may involve subtleties that these guidelines cannot cover. Nevertheless, we anticipate that this paper will help weed scientists in their initial designs for research, in the analysis of data and in the presentation of results for publication.
The sodium and potassium concentrations in leaf and stem have been genetically studied as physiological components of the vegetative and reproductive development in two populations of F(8) lines, derived from a salt sensitive genotype of Solanum lycopersicum cv. Cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Genetic parameters of ten traits under salinity and five of them under control conditions were studied by ANOVA, correlation, principal component and QTL analysis to understand the global response of the plant. Two linkage maps including some tomato flowering time and salt tolerance candidate genes encoding for SlSOS1, SlSOS2, SlSOS3, LeNHX1, LeNHX3, were used for the QTL detection. Thirteen and 20 QTLs were detected under salinity in the P and C populations, respectively, and four under control conditions. Highly significant and contributing QTLs (over 40%) for the concentrations of Na(+) and K(+) in stems and leaves have been detected on chromosome 7 in both the populations. This is the only genomic position where the concentration QTLs for both the cations locate together. The proportion of QTLs significantly affected by salinity was larger in the P population (64.3%, including all QTLs detected under control) than in the C population (21.4%), where the estimated genetic component of variance was larger for most traits. A highly significant association between the leaf area and fruit yield under salinity was found only in the C population, which is supported by the location of QTLs for these traits in a common region of chromososome C1. As far as breeding for salt tolerance is concerned, only two sodium QTLs (lnc1.1 and lnc8.1) map in genomic regions of C1 and C8 where fruit yield QTLs are also located but in both the cases the profitable allele corresponds to the salt sensitive, cultivated species. One of those QTLs, lnc1.1 might involve LeNHX3.
Despite the great economic importance of citrus, its phylogeny and taxonomy remain a matter of controversy. Moreover pathogens of increased virulence and dramatic environmental changes are currently spreading or emerging. The objectives of the present paper, measuring genetic variability and studying its pattern of distribution, are crucial steps to optimize sampling strategies in the search of genotypes that tolerate or resist these threatening factors within the huge array of Citrus and Citrus related species. Their intraspecific and intrageneric variability was studied comparatively by means of ten enzymatic systems using eight different measures. The analysis of ten enzymatic systems allowed us to distinguish all the species and all but one artificial hybrid. The species with the lowest genotypic variability are C. myrtifolia, C. deliciosa (willow leaf mandarin), C. paradisi (grapefruit), C. limon (lemon) and C. sinensis (sweet orange), while Severinia buxifolia shows the highest value. A broad spectrum of heterozygosity values was found in the collection. Lemons (C. limon, C. meyeri, C. karna, C. volkameriana), limes (C. aurantifolia, C. limettioides, C. lattifolia) and C. bergamia show a very high percentage of heterozygosity which indicates an origin through interspecific hybridization. Two main factors limit genetic intraspecific variability: apomictic reproduction, where nucellar embryos are much more vigorous than the zygotic ones, and nurserymen selecting against variability in the seedling stage of the rootstocks or in propagating the scion cultivars vegetatively. Additionally, self-pollination appears in some species mainly used as rootstocks which would explain their low heterozygosity values. Genetic differences between species and genera are in general high, which suggests that adaptation might have played an important role during the evolution of the orange subfamily.
Pseudomonas savastanoi pv. savastanoi causes olive knot disease, which is present in most countries where olive trees are grown. Although the use of cultivars with low susceptibility may be one of the most appropriate methods of disease control, little information is available from inoculation assays, and cultivar susceptibility assessments have been limited to few cultivars. We have evaluated the effects of pathogen virulence, plant age, the dose/response relationship, and the induction of secondary tumors in olive inoculation assays. Most P. savastanoi pv. savastanoi strains evaluated were highly virulent to olive plants, but interactions between cultivars and strains were found. The severity of the disease in a given cultivar was strongly dependent of the pathogen dose applied at the wound sites. Secondary tumors developed in noninoculated wounds following inoculation at another position on the stem, suggesting the migration of the pathogen within olive plants. Proportion and weight of primary knots and the presence of secondary knots were evaluated in 29 olive cultivars inoculated with two pathogen strains at two inoculum doses, allowing us to rate most of the cultivars as having either high, medium, or low susceptibility to olive knot disease. None of the cultivars were immune to the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.