The functionalization of gold nanoparticles (GNPs) with peptidic moieties can prevent their aggregation and facilitate their use for applications both in vitro and in vivo. To date, no peptide-based coating has been shown to stabilize GNPs larger than 30 nm in diameter; such particles are of interest for applications including vaccine development, drug delivery, and sensing. Here, GNPs with diameters of 20, 40, and 100 nm are functionalized with peptide amphiphiles. Using a combination of transmission electron microscopy, UV–vis spectroscopy, and dynamic light scattering, we show that GNPs up to 100 nm in size can be stabilized by these molecules. Moreover, we demonstrate that these peptide amphiphiles form curvature-dependent, ordered structures on the surface of the GNPs and that the GNPs remain disperse at high-salt concentrations and in the presence of competing thiol-containing molecules. These results represent the development of a peptide amphiphile-based coating system for GNPs which has the potential to be beneficial for a wide range of biological applications, in addition to image enhancement and catalysis.
Electron donation from stromal reductants to photosystem I (PSI) was studied using the kinetics of P700(+) (the oxidized primary donor of PSI) reduction in the dark after irradiation of barley ( Hordeum vulgare L.) leaves. The leaves were treated with diuron and methyl viologen to abolish both the electron flow from PSII and PSI-driven cyclic electron transport. The redox state of P700 was monitored using the absorbance changes at 830 nm (Delta A(830)). Two exponentially decaying components with half-times of about 3 s (the slow component) and about 0.6 s (the fast one) were distinguished in the kinetic curves of Delta A(830) relaxation after a 1-s pulse of far-red light. The complex kinetics of P700(+) reduction thus manifested two types of PSI unit differing in the rate of electron input from stromal reductants. The rates of both kinetic components assayed after 1-s pulses were increased about 20-fold by a short (2-5 min) heat-pretreatment of leaves, indicating the accelerated input of electrons to both types of PSI unit. The increased rates of electron flow to P700(+) were even observed 1.5 h after the action of heat had been completed. Both kinetic components were dramatically slowed down upon irradiation of heat-treated leaves for 20-30 s. Their rates were restored after a short (20-30 s) period of darkness. A 5-min leaf exposure at 38 degrees C was sufficient to stimulate by severalfold the reduction of P700(+) pre-oxidized by a brief light pulse. In contrast, the acceleration of P700(+) reduction after a 1-min irradiation was observed only if leaves were subjected to temperatures above 40 degrees C. Neither heat treatment of leaves nor light-dark modulations in the rates of the fast and the slow components of P700(+) dark reduction influenced the relative magnitudes of the two kinetic components, providing strong additional evidence in favor of two distinct types of PSI existing per se in barley leaves. The key role in the control of the activity of electron donation to P700(+) in both rapidly and slowly reducing PSI units was attributed to the amount of stromal reductants available for P700(+) reduction. The latter was expected to be reduced under illumination in the presence of methyl viologen, while increased again in the dark. The regeneration of the pool of stromal reductants in the dark was likely provided by starch breakdown within the chloroplast stroma, but not by import of reducing equivalents from the cytosol. This was evidenced by much lower rates, compared with 1-h dark-adapted leaves, of dark reduction of both components of P700(+) in leaves stored for 24 h in the dark and thus depleted of starch but containing large amounts of glucose, the respiratory substrate.
The action of various inhibitors affecting the donor and acceptor sides of photosystem II (PSII) on the polyphasic rise of chlorophyll (Chl) fluorescence was studied in thylakoids isolated from pea leaves. Low concentrations of diuron and stigmatellin increased the magnitude of J-level of the Chl fluorescence rise. These concentrations barely affected electron transfer from PSII to PSI as revealed by the unchanged magnitude of the fast component (t(1/2) = 24 ms) of P700+ dark reduction. Higher concentrations of diuron and stigmatellin suppressed electron transport from PSII to PSI, which corresponded to the loss of thermal phase, the Chl fluorescence rise from J-level to the maximal, P-level. The effect of various concentrations of carbonylcyanide m-chlorophenylhydrazone (CCCP), which abolishes S-state cycle and binds at the plastoquinone site on QB, the secondary quinone acceptor PSII, on the Chl fluorescence rise was very similar to that of diuron and stigmatellin. Low concentrations of diuron, stigmatellin, or CCCP given on the background of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), which is shown to initiate the appearance of a distinct I-peak in the kinetics of Chl fluorescence rise measured in isolated thylakoids [BBA 1607 (2003) 91], increased J-step yield to I-step level and retarded Chl fluorescence rise from I-step to P-step. The increased J-step fluorescence rise caused by these three types of inhibitors is attributed to the suppression of the non-photochemical quenching of Chl fluorescence by [S2+ S3] states of the oxygen-evolving complex and oxidized P680, the primary donor of PSII reaction centers. In the contrary, the decreased fluorescence yield at P step (J-P, passing through I) is related to the persistence of a "plastoquinone"-type quenching owing to the limited availability of photochemically generated electron equivalents to reduce PQ pool in PSII centers where the S-state cycle of the donor side is modified by the inhibitor treatments.
Kinetic curves of absorbance changes induced by far-red light (FR, 830 nm) ( ∆ A 830 ), which reflect redox transformations of PSI primary electron donor, P700, were examined in intact barley ( Hordeum vulgare L.) leaves. In intact leaves, FR induced the biphasic increase in absorbance related to P700 photooxidation. Leaf treatment with methyl viologen or antimycin A suppressed the slow phase of P700 photooxidation, which was attained in such leaves within the first second of light exposure. With FR turned off, the previously increased absorbance at 830 nm dropped down to its initial level, thus reflecting ê700 + reduction. In the control leaves, the kinetics of ê700 + reduction consisted of three exponentially decaying components, with the corresponding half-times of 8.8 s (the slow component, with its magnitude comprising 24% of the total ∆ A 830 signal), 0.73 s (the middle component, 49% of ∆ A 830 ), and 0.092 s (the fast component, 26% of ∆ A 830 ). The rate of the fast component of P700 + reduction, following FR irradiation of leaves, was about ten times lower than that of the noncyclic electron transfer from PSII to PSI computed from ∆ A 830 relaxation after the abrupt offset of white light. The treatment of leaves with methyl viologen or antimycin A completely abolished the fast component of ∆ A 830 relaxation after FR exposure. It was concluded that the fast component is determined by the operation of ferredoxin-dependent cyclic electron transport around PSI. This study represents the first report on the identification of this pathway of electron transport in vivo and the estimation of its rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.