Here we report on the application of non-axisymmetric endwall contouring to mitigate the endwall losses of one conventional- and two high-lift low-pressure turbine airfoil designs. The design methodology presented combines a gradient-based optimization algorithm with a three-dimensional CFD flow solver to systematically vary a free-form parameterization of the endwall. The ability of the CFD solver employed in this work to predict endwall loss modifications resulting from non-axisymmetric contouring is demonstrated with previously published data. Based on the validated trend accuracy of the solver for predicting the effects of endwall contouring, the magnitude of predicted viscous losses forms the objective function for the endwall design methodology. This system has subsequently been employed to optimize contours for the conventional-lift Pack B and high-lift Pack D-F and Pack D-A low-pressure turbine airfoil designs. Comparisons between the predicted and measured loss benefits associated with the contouring for Pack D-F design are shown to be in reasonable agreement. Additionally, the predictions and data demonstrate that the Pack D-F endwall contour is effective at reducing losses primarily associated with the passage vortex. However, some deficiencies in predictive capabilities demonstrate here highlight the need for a better understanding of the physics of endwall loss-generation and improved predictive capabilities. More detailed analysis of the contouring results for the Pack B design is presented in a companion paper (Knesevici et al. [1]).
Predictions of time-resolved flowfields are now commonplace within the gas-turbine industry, and the results of such simulations are often used to make design decisions during the development of new products. Hence it is necessary for design engineers to have a robust method to determine the level of convergence in design predictions. Here we report on a method developed to determine the level of convergence in a predicted flowfield that is characterized by periodic unsteadiness. The method relies on fundamental concepts from digital signal processing including the discrete Fourier transform, cross correlation, and Parseval’s theorem. Often in predictions of vane–blade interaction in turbomachines, the period of the unsteady fluctuations is expected. In this method, the development of time-mean quantities, Fourier components (both magnitude and phase), cross correlations, and integrated signal power are tracked at locations of interest from one period to the next as the solution progresses. Each of these separate quantities yields some relative measure of convergence that is subsequently processed to form a fuzzy set. Thus the overall level of convergence in the solution is given by the intersection of these sets. Examples of the application of this technique to several predictions of unsteady flows from two separate solvers are given. These include a prediction of hot-streak migration as well as more typical cases. It is shown that the method yields a robust determination of convergence. Also, the results of the technique can guide further analysis and∕or post-processing of the flowfield. Finally, the method is useful for the detection of inherent unsteadiness in the flowfield, and as such it can be used to prevent design escapes.
An approach to endwall contouring has been developed with the goal of reducing secondary losses in highly loaded axial flow turbines. The present paper describes an experimental assessment of the performance of the contouring approach implemented in a low-speed linear cascade test facility. The study examines the secondary flows of a cascade composed of Pratt & Whitney PAKB airfoils. This airfoil has been used extensively in low-pressure turbine research, and the present work adds intrapassage pressure and velocity measurements to the existing database. The cascade was tested at design incidence and at an inlet Reynolds number of 126,000 based on inlet midspan velocity and axial chord. Quantitative results include seven-hole pneumatic probe pressure measurements downstream of the cascade to assess blade row losses and detailed seven-hole probe measurements within the blade passage to track the progression of flow structures. Qualitative results take the form of oil surface flow visualization on the endwall and blade suction surface. The application of endwall contouring resulted in lower secondary losses and a reduction in secondary kinetic energy associated with pitchwise flow near the endwall and spanwise flow up the suction surface within the blade passage. The mechanism of loss reduction is discussed in regard to the reduction in secondary kinetic energy.
The extreme temperatures in a jet engine require the use of thermal barrier coatings and internal cooling channels to keep the components in the turbine section below their melting temperature. The presence of solid particles in the engine’s gas path can erode thermal coatings and clog cooling channels, thereby reducing part life and engine performance. This study uses computational fluid dynamics to design the geometry of a static, inertial particle separator to remove small particles, such as sand, from the engine flow. The concept for the inertial separator includes the usage of a multiple louver array followed by a particle collector. The results of the study show a louver design can separate particles while not incurring large pressure loss.
An approach to endwall contouring has been developed with the goal of reducing secondary losses in highly loaded axial turbo-machinery. The present paper describes an experimental assessment of the performance of the contouring approach implemented in a low speed linear cascade test facility. The study examines the secondary flows of a cascade composed of Pratt and Whitney PAKB airfoils. This airfoil has been used extensively in low pressure turbine research and the present work adds intra-passage pressure and velocity measurements to the existing database. The cascade was tested at design incidence and at an inlet Reynolds number of 126,000 based on inlet midspan velocity and axial chord. Quantitative results include seven hole pneumatic probe pressure measurements downstream of the cascade to assess blade row losses, and detailed seven hole probe measurements within the blade passage to track the progression of flow structures. Qualitative results take the form of oil surface flow visualization on the endwall and blade suction surface. The application of endwall contouring resulted in lower secondary losses and caused a reduction in secondary kinetic energy associated with pitchwise flow near the endwall and spanwise flow up the suction surface within the blade passage. The mechanism of loss reduction is discussed in regards to the reduction of secondary kinetic energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.