The extreme temperatures in a jet engine require the use of thermal barrier coatings and internal cooling channels to keep the components in the turbine section below their melting temperature. The presence of solid particles in the engine’s gas path can erode thermal coatings and clog cooling channels, thereby reducing part life and engine performance. This study uses computational fluid dynamics to design the geometry of a static, inertial particle separator to remove small particles, such as sand, from the engine flow. The concept for the inertial separator includes the usage of a multiple louver array followed by a particle collector. The results of the study show a louver design can separate particles while not incurring large pressure loss.
Supercritical carbon dioxide (sCO2) power cycles could be a more efficient alternative to steam Rankine cycles for power generation from coal. Using existing labyrinth seal technology, shaft-end-seal leakage can result in a 0.55–0.65% points efficiency loss for a nominally 500 MWe sCO2 power cycle plant. Low-leakage hydrodynamic face seals are capable of reducing this leakage loss and are considered a key enabling component technology for achieving 50–52% thermodynamic cycle efficiencies with indirect coal-fired sCO2 power cycles. In this paper, a hydrodynamic face seal concept is presented for utility-scale sCO2 turbines. A 3D computational fluid dynamics (CFD) model with real gas CO2 properties is developed for studying the thin-film physics. These CFD results are also compared with the predictions of a Reynolds-equation-based solver. The 3D CFD model results show large viscous shear and the associated windage heating challenge in sCO2 face seals. Following the CFD model, an axisymmetric finite-element analysis (FEA) model is developed for parametric optimization of the face seal cross section with the goal of minimizing the coning of the stationary ring. A preliminary thermal analysis of the seal is also presented. The fluid, structural, and thermal results show that large-diameter (about 24 in.) face seals with small coning (of the order of 0.0005 in.) are possible. The fluid, structural, and thermal results are used to highlight the design challenges in developing face seals for utility-scale sCO2 turbines.
Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on the performance as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, and also the airfoils that were wet from ingested water, in addition to, different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing for a certain amount of wet film thickness, the shear forces actually wash the dust downstream and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.
Supercritical carbon dioxide (sCO2) power cycles could be a more efficient alternative to steam Rankine cycles for power generation from coal. In this paper, the end seal layout for a nominally 500 MWe sCO2 turbine is presented and the shaft end sealing requirements for such utility-scale sCO2 turbines are discussed. Shaft end leakage from a closed-loop sCO2 cycle and the associated recompression load can result in net cycle efficiency loss of about 0.55% points to 0.65% points for a nominally 500 MWe sCO2 power cycle plant. Low-leakage hydrodynamic face seals are capable of reducing this leakage loss (and net cycle efficiency loss), and are considered a key enabling component technology for achieving 50–52% or greater thermodynamic cycle efficiencies with indirect coal-fired sCO2 power cycles. In this paper, a hydrodynamic face seal concept is presented for end seals on utility-scale sCO2 turbines. A 3D computational fluid dynamics (CFD) model with real gas CO2 properties is developed for studying the physics of the thin fluid film separating the seal stationary ring and the rotor. The results of the 3D CFD model are also compared with the predictions of a Reynolds-equation-based solver. The 3D CFD model results show large viscous shear and the associated windage heating challenge in sCO2 face seals. Following the CFD model, an axisymmetric finite-element analysis (FEA) model is developed for parametric optimization of the face seal cross-section with the goal of minimizing the coning of the stationary ring. A preliminary thermal analysis of the seal is also presented. The fluid, structural and thermal results show that large-diameter (about 24 inch) face seals with small coning or out-of-plane deformations (of the order of 0.0005 inch) are possible. The fluid, structural and thermal results are used to highlight the design challenges in developing large-diameter and high-differential-pressure face seals for the operating conditions of utility-scale sCO2 turbines.
Cycle efficiency is one of the critical parameters linked to the success of implementing a Supercritical Carbon Dioxide (sCO2) power cycle in a Concentrating Solar Power (CSP) plant application. Ambient conditions often change rapidly during operation, making it imperative that the efficiency of the plant cycle be optimized to obtain the maximum power production when sunlight is available. Past analyses have shown that operating the cycle at the critical point provides the optimum efficiency for dry operation. However, operation at this point is challenging due to the dramatic changes in thermophysical properties of CO2 near the critical point and the risk of the fluid having a two-phase, gas-liquid state. As a result, there is a high likelihood that liquid can form upstream of the primary compressor in the sCO2 power cycle. This paper explores the potential for liquid formation when operating near the critical point and looks at the influence of liquid on the compressor performance. The performance impact is based on industry experience with wet gas compression in power generation and oil and gas applications. Options for mitigating liquid effects are also investigated, such as upstream heating, separation, or compressor internal controls (blade surface gas ejection). The conclusions of the paper focus on the risk, estimated impact on performance, and summary of mitigation techniques for liquid CO2 entering a sCO2 compressor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.