The study examined the impact of thermal treatment on anatomical and mechanical properties Ricinodendron heudelotii wood. Wood samples were oven dried at 105°C and cooled in a desiccator to a constant weight before the thermal treatment. Heat treatment of wood was carried out in a Furnace at 120°C, 140°C and 160°C for 45 minutes and 90 minutes. The Density, Modulus of Elasticity (MOE), Modulus of Rupture (MOR), and the anatomical properties were assessed. The results for Density of Ricinodendron heudelotii wood showed decrease from 279 kg/m3 (120°C at 45 minutes) to 256 kg/m3 (160°C at 90 minutes) while that of control was 281 kg/m3 which was lower than the treated samples. The increase in temperature with time had effect of the color of wood as it changed from creamy white to dark brown. The image of untreated and treated samples showed no significant changes within and among treatment groups as there was no effect of treatment time and exposure on the samples. The MOE of heat treated Ricinodendron heudelotii increased from 2064.84 N/mm2 (140°C for 45 minutes) to 2271.93 N/mm2 (160°C for 90 minutes) while MOR decreased from 40.56 N/mm2 (140°C for 90 minutes) to 33.53 N/mm2 (160°C for 90 minutes). The study revealed that the wood could be used in a light furniture as unnecessarily heavy wood is not important. Also, the study proved effective in improving the modulus of elasticity of the wood.
Aims: This work investigated the effect of thermal modification on some of the physical properties and mechanical properties of Daniella oliveri wood. Study Design: The study design used for this experiment was 3 x4 Factorial experiment in Completely Randomized Design. Place and Duration of Study: The study was conducted at the Federal University of Technology, Akure wood laboratory and the study lasted for 6 months. Methodology: Wood samples were thermally treated at the temperature of 120, 140, 160 and 180°C, for different durations of 1, 1.5 and 2 hours in a muffle furnace. The planks were air-dried to reduce the moisture content and then machined into the required dimensions in the direction parallel to grain with a circular saw. Thirty-nine defect-free samples of dimensions 20 mm × 20 mm × 60 mm were prepared for dimensional stability and compression test, static bending tests and the hardness tests to make a total of 117 samples. Results: The result showed that the average weight loss of the treated wood samples varied from 3.79% at 120°C for 1 hour to 7.51% at 180°C for 2 hours. The treatment led to reduction in density from 528 to 459 kg/m3 at 180°C for 2 hours. The heat treatment also led to reduction in water absorption and volumetric swelling of the treated samples. The mean value for Modulus of elasticity (MOE) ranges from 2.17x103 N/mm2 to 2.96 x 103 N/mm2 for the treated samples while the untreated was 2.22x103 N/mm2. Heat treatment brought about improvement in the maximum compressive strength and the Janka hardness parallel to the grain of wood samples. The value of compressive strength increased from 26.58 N/mm2 to 41.71 N/mm2 and hardness from 69.24 N to 75.5 N. It can therefore be concluded that thermal modification greatly enhanced the dimensional stability and mechanical properties of wood samples.
The decreasing availability of fuel wood coupled with the increasing prices of kerosene and cooking gas in Nigeria has drawn attention on the need to consider alternative sources of energy for domestic and industrial use in the country. The study was undertaken to evaluate the combustion properties (percentage volatile matter, percentage ash content, percentage fixed carbon, heating value) of briquette produced from coconut husk and male inflorescence of Elaeis guineensis. The experiment was laid down using the Randomized Complete Block Design (RCBD). The study involves three particle sizes (2 mm each) of coconut husk, male inflorescence of oil palm tree and cassava starch used as binder. The coconut husk and male inflorescence of Elaeis guineensis were varied into (25:30:40:50:60) respectively and bound together with starch at same ratio. Proximate analysis was carried out to determine the constituent of the briquettes which include ash content, percentage fixed carbon, percentage volatile matter and experimental test to determine the heating Lawal et al.; JENRR, 3(2): 1-9, 2019; Article no.JENRR.50112 2 value was also determined. All processing variables in this study were significantly different except for heating value at P>0.05. From the result of the percentage ash content, briquette produced from coconut husk, male inflorescence and starch at (20:20:60) has the least fixed carbon (6.5%) with better performance. The highest percentage volatile matter 74.6% was obtained from coconut husk, male inflorescence and starch at (20:20:60) while low fixed carbon (18.8%) was obtained from male inflorescence and starch at (60:40). In conclusion, large quantities of wastes generated in terms of coconut husk and male inflorescence which are disposed indiscriminately can be utilized to produce briquette with enhanced performance. Original Research Article
Aims: This study investigates the use of sawdust from 3 hardwood species as low-cost adsorbent for the removal of copper from contaminated water. Study Design: The experimental design used for this study was 3 x 2 x 4 factorial experiment; the different sawdust species, two baselines (treated and untreated) and four levels of pH and time as factors were combined and used for the study. Methodology: Test was carried out to investigate the effect of sawdust pre-treatment on their adsorption capacity in the removal of Copper ions from contaminated water at different pH levels; the sawdust samples were sieved through a screen size of 850 μm after which a portion of each species sawdust was subjected to pre-treatment by boiling while the other portions were maintained as control samples (untreated). Results: The results shows that adsorption capacity for both treated and untreated samples were 69.75±13.78%, 68.60±19.48%, 69.34±23.08%, 74.79±17.79%, 74.52±22.30% and 76.90±18.21% for Alstonia boonei, Erythrophleum suaveolens and Ficus mucuso respectively. Conclusion: The contact time and pH showed no significant difference between the treated and untreated samples. Sawdusts from the selected wood species are suitable to be used as adsorbent towards the removal of copper from contaminated water.
In this study, the effect of silicone oil thermal modification at different treatment temperatures (150 ºC, 180 ºC and 210 ºC for 2 h and 4 h.) on the mechanical properties of Masson pine (Pinus massoniana L.) wood was investigated. The density, modulus of elasticity (MOE), modulus of rupture (MOR), impact bending, compressive strength, and hardness of silicone oil thermal treated samples were evaluated and compared with those of untreated samples. Results showed the mechanical properties of Masson pine wood reduces after silicone oil thermal modification. The higher the modification temperature, the lower the mechanical properties of Mason pine wood. At 210 ºC for 4 h, mechanical properties of the modified samples were two times lower than the mechanical properties of the untreated. Higher modification temperature and longer treatment time contributed to lower mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.