Siderophores produced by microorganisms to scavenge iron from the environment have been shown to contribute to virulence and/or stress resistance of some plant pathogenic bacteria. Phytopathogenic bacteria of Pectobacterium genus possess genes for the synthesis of siderophore enterobactin, which role in plant-pathogen interactions has not been elucidated. In the present study we characterized the phenotype of the mutant strain of Pba deficient for the enterobactin-biosynthetic gene entA. We showed that enterobactin may be considered as a conditionally beneficial virulence factor of Pba. The entA knockout did not reduce Pba virulence on non-primed plants; however, salicylic acid-primed plants were more resistant to ΔentA mutant than to the wild type Pba. The reduced virulence of ΔentA mutant towards the primed plants is likely explained by its compromised resistance to oxidative stress.
Rapid development of antibiotic resistance in bacteria is a critical public health problem in the world. One of the main routes of resistance development is the transfer of genes containing antibiotic resistance cassettes. Gene transfer can be done through horizontal transfer of genes: transduction, conjugation, and transformation. Many factors in the environment influence these processes, and one of them is the action of metal oxide nanoparticles (MONPs), which can appear in the milieu through both biological synthesis and the release of engineered nanomaterial. In this study, the effect of AlOOH, CuO, Fe3O4, TiO2, and ZnO MONPs on the transformation (heat shock transformation) of bacteria Escherichia coli K12, and the conjugation between E. coli cc118 and E. coli Nova Blue were studied. The MONPs were synthesized by one method and fully characterized. ZnO nanoparticles (NPs) have significantly increased the efficiency of transformation (more than 9-fold), while the other NPs have reduced it to 31 times (TiO2 NPs). AlOOH NPs increased the number of transconjugants more than 1.5-fold, while CuO and Fe3O4 NPs did not have a significant effect on transformation and conjugation. Thus, the data shows that different types of MONPs can enhance or inhibit different gene transfer mechanisms, affecting the spread of antibiotic resistance genes.
Rapid and cost‐efficient methods for diagnostics of infectious diseases can expedite prescription of adequate treatment, thus shortening the patients’ recovery and reducing adverse side effects. In this study, we developed a procedure for visual detection of bacterial pathogens Gram‐negative Neisseria meningitidis and Gram‐positive Streptococcus pneumoniae directly from human samples of cerebrospinal fluid (CSF). The assay uses hybridization probes that can efficiently recognize folded single‐stranded DNA analytes due to their split design. The assay includes the following stages: PCR amplification of N. meningitidis and S. pneumoniae targeted sequences; λ exonuclease treatment of the polymerase chain reaction (PCR) amplicons, and detection of the amplicons by hybridization probes with visual signal output. The assay requires 2.0 h with hands‐on time of about 40 min, and a regular PCR thermal cycler. It detects down to 10 bacteria in 2 μL of cerebrospinal fluid. The assay works for both gram‐positive and gram‐negative bacteria and does not require optimization of PCR conditions. This development creates a basis for the point‐of‐care diagnostics of bacterial meningitis with visual signal output.
In the present study, we attempted to elucidate if the harmful phytopathogenic bacteria of Pectobacterium genus (P. atrosepticum) possess the enzymes for oxidation of phenolic compounds. Polyphenol oxidase (laccase) activity was revealed in P. atrosepticum cell lysates. Using bioinformatic analysis, an ORF encoding a putative copper-containing polyphenol oxidase of 241 amino acids with a predicted molecular mass of 25.9 kDa was found. This protein (named Pal1) shares significant level of identity with laccases of a new type described for several bacterial species. Cloning and expression of the pal1 gene and the analysis of corresponding recombinant protein confirmed that Pal1 possessed laccase activity. The recombinant Pal1 protein was characterized in terms of substrate specificity, kinetic parameters, pH and temperature optimum, sensitivity to inhibitors and metal content. Pal1 demonstrated alkali- and thermo-tolerance. The kinetic parameters K and kcat for 2,6-dimethoxyphenol were 0.353 ± 0.062 mM and 98.79 ± 4.9 s , respectively. The protein displayed high tolerance to sodium azide, sodium fluoride, NaCl, SDS and cinnamic acid. The transcript level of the pal1 gene in P. atrosepticum was shown to be induced by plant-derived phenolic compound (ferulic acid) and copper sulfate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.